Free vibration of single degree of freedom systems exercises 1-24

Example 2.1
An industrial press is mounted on a rubber pad to isolate it from its foundation. If the rubber pad
is compressed 5 mm by the self weight of the press, find the natural frequency of the system.

$$\begin{align} & {{\delta }_{st}}=5\cdot {{10}^{-5}}m \\ & {{\omega }_{n}}=\sqrt{\frac{g}{{{\delta }_{st}}}}=44.2945\text{ rad/s=7}\text{.0497 Hz} \\ \end{align}$$
Example 2.2
A spring mass system has a natural period of 0.5 s. Determine the value of new period if the spring stiffness is decreased by 150 percent and increased by 1000 percent.
Solution: The formula that gives connection between natural frequency and the period is: 
$$\tau =\frac{2\pi }{{{\omega }_{n}}}=0.5$$

The expression for natural frequency can be written in the following form:
$${{\omega }_{n}}=\sqrt{\frac{k}{m}}$$
Combining those two expressions we get:
$$\begin{align} & \tau =\frac{2\pi }{{{\omega }_{n}}}=\frac{2\pi }{\sqrt{\frac{k}{m}}}=2\pi \sqrt{\frac{m}{k}}=0.5s \\ & \sqrt{m}=0.5\frac{\sqrt{k}}{2\pi } \\ \end{align}$$
A)    The new stiffness of the spring is 1.50 times smaller than original stiffness that means: $$\begin{align} & {{k}_{a}}=\frac{k}{1.5} \\ & {{\tau }_{a}}=\frac{2\pi \sqrt{m}}{\sqrt{{{k}_{a}}}}=\frac{2\pi \left( 0.5\frac{\sqrt{k}}{2\pi } \right)}{\sqrt{\frac{k}{1.5}}}=0.5\cdot 1.5=0.75s \\ \end{align}$$
B)    The new stiffness of the spring is 10.00 times larger than original stiffness that means: $$\begin{align} & {{k}_{a}}=10k \\ & {{\tau }_{a}}=\frac{2\pi \sqrt{m}}{\sqrt{{{k}_{a}}}}=\frac{2\pi \left( 0.5\frac{\sqrt{k}}{2\pi } \right)}{\sqrt{10k}}=\frac{0.5}{10}=0.05s \\ \end{align}$$
Example 2.3
A spring mass system has the natural frequency of 2000 Hz. When we reduce the spring constant by 1000 N/mm the frequency is altered by 60 percent. Find the mass and the stiffness of the system.
$$\begin{align} & {{\omega }_{n}}=62.832\text{ rad/s=}\sqrt{\frac{k}{m}} \\ & \sqrt{m}=\frac{\sqrt{k}}{62.832} \\ & {{\omega }_{n1}}=0.55{{\omega }_{n}}=34.5576\text{ rad/s}=\sqrt{\frac{{{k}_{new}}}{{{m}_{new}}}}=\sqrt{\frac{k-800}{m}} \\ & 62.836\sqrt{\frac{k-800}{m}}=34.5576 \\ & \sqrt{\frac{k-800}{m}}=0.55 \\ & \frac{k-800}{m}={{0.55}^{2}}=0.3025 \\ & k=1146.9534\text{ N/m} \\ & \sqrt{m}=\frac{\sqrt{k}}{62.832} \\ & m=\frac{1146.9534}{3947.8602} \\ & m=0.2905\text{ kg} \\ \end{align}$$
Example 2.4
A helical spring which is fixed on the one end and loaded on the other end, requires a force of 100 N to produce elongation of 10 mm. the ends of the spring are now rigidly fixed, one end vertically above the other, and a block of mass 10 kg is attached at the middle point of its length. Determine the time taken to complete one vibration cycle when the mass is set vibrating in the vertical direction. 

$$\begin{align} & k=\frac{100}{\left( \frac{10}{1000} \right)}=10000\text{N/m} \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{4k}{m}}=63.2456\text{ rad/s} \\ & {{\tau }_{n}}=\frac{2\pi }{{{\omega }_{n}}}=0.0993\text{ s} \\ \end{align}$$
Example 2.5

An air-conditioning chiller unit weighing 9000 N is to be supported by four air springs. Design the air springs such that the natural frequency of vibration of the unit lies between 5 rad/s and 10 rad/s.
$$\begin{align} & W=9000N \\ & {{\omega }_{n}}\in \left[ 5,10 \right]rad/s \\ & m=\frac{9000}{9.81} \\ & {{\omega }_{n}}=7.5\text{ rad/s} \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}} \\ & {{k}_{eq}}=m\omega _{n}^{2}=\frac{9000}{9.81}{{7.5}^{2}}=51658.2\text{ N/m=4k} \\ & k=\frac{51658.2}{4}=12914.5\text{ N/m} \\ \end{align}$$

Example 2.6
The maximum velocity attained by the mass of a simple harmonic oscillator is 10 cm/s, and
the period of oscillation is 2 s. If the mass is released with an initial displacement of 2 cm,
find (a) the amplitude, (b) the initial velocity, (c) the maximum acceleration, and (d) the
phase angle.
$$\begin{align} & x=A\cos ({{\omega }_{n}}t-{{\phi }_{0}}) \\ & \dot{x}=-A{{\omega }_{n}}\sin ({{\omega }_{n}}t-{{\phi }_{0}}) \\ & \ddot{x}=-A\omega _{n}^{2}\cos ({{\omega }_{n}}t-{{\phi }_{0}}) \\ & a){{\omega }_{n}}A=0.1\text{ m/s} \\ & {{\tau }_{n}}=\frac{2\pi }{{{\omega }_{n}}}=2s\Rightarrow {{\omega }_{n}}=3.1416\text{ rad/s} \\ & \text{A=}\frac{0.1}{{{\omega }_{n}}}=0.03183\text{ m} \\ & \text{d)}{{\text{x}}_{0}}=x(t=0)=Acos\left( -{{\phi }_{0}} \right)=0.02m \\ & cos\left( -{{\phi }_{0}} \right)=\frac{0.02}{A}=0.6283 \\ & {{\phi }_{0}}={{51.0724}^{\circ }} \\ & \text{b)}{{{\text{\dot{x}}}}_{0}}=\dot{x}\left( t=0 \right)=-{{\omega }_{n}}A\sin \left( -{{\phi }_{0}} \right)=-0.1\sin \left( -{{51.0724}^{\circ }} \right) \\ & {{{\dot{x}}}_{0}}=0.07779\text{ m/s} \\ & \text{c)}{{{\text{\ddot{x}}}}_{\max }}=\omega _{n}^{2}A={{3.1416}^{2}}\cdot 0.03183=00314151m/{{s}^{2}} \\ \end{align}$$
Example 2.7
Three springs and a mass are attached to a rigid, weightless bar PQ as shown in next figure
Find the natural frequency of vibration of the system.

Example 2.8
An automobile having a mass of 2,000 kg deflects its suspension springs 0.02 m under static conditions. Determine the natural frequency of the automobile in the vertical direction by assuming damping to be negligible.

$$\begin{align} & m=2000kg \\ & {{\delta }_{st}}=0.02m \\ & {{\omega }_{n}}=\sqrt{\frac{g}{{{\delta }_{st}}}}=\sqrt{\frac{9.81}{0.02}}=22.1472\text{ rad/s} \\ \end{align}$$

Example 2.9
Find the natural frequency of vibration of a spring-mass system arranged on an inclined plane, as shown in next figure. 

$$\begin{align} & m\ddot{x}=-{{k}_{1}}\left( x+{{\delta }_{st}} \right)-{{k}_{2}}\left( x+{{\delta }_{st}} \right)+W\sin \theta \\ & {{\delta }_{st}}\left( {{k}_{1}}+{{k}_{2}} \right)=W\sin \theta \\ & m\ddot{x}+\left( {{k}_{1}}+{{k}_{2}} \right)x=0 \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{1}}+{{k}_{2}}}{m}} \\ \end{align}$$
Example 2.10
A loaded mine cart weighing 20 KN is being lifted by a frictionless pulley and a wire rope as shown in next figure. Find the natural frequency of vibration of the cart in the given position.

$$\begin{align} & {{k}_{1}}=\frac{{{A}_{1}}{{E}_{1}}}{{{l}_{1}}}=\frac{\frac{\pi }{4}\cdot {{(0.001)}^{2}}\left( 200\cdot {{10}^{9}} \right)}{9}=17453.3N/m \\ & {{k}_{2}}=\frac{{{A}_{2}}{{E}_{2}}}{{{l}_{2}}}=\frac{17453.3\left( 7.5 \right)}{9}=1454.4.3N/m \\ & {{k}_{eq}}={{k}_{1}}+{{k}_{2}}=31997.7N/m \\ & mx=-\left( {{k}_{1}}+{{k}_{2}} \right)\left( x+{{\delta }_{st}} \right)+W\sin \theta \\ & \left( {{k}_{1}}+{{k}_{2}} \right){{\delta }_{st}}=W\sin \theta \\ & m\ddot{x}+\left( {{k}_{1}}+{{k}_{2}} \right)x=0 \\ & \omega =\sqrt{\frac{{{k}_{1}}+{{k}_{2}}}{m}}=3.9597\text{ rad/s} \\ \end{align}$$

Example 2.11
An electronic chassis weighing 500 N is isolated by supporting it on four helical springs. Design the springs so that the unit can be used in an environment in which the vibratory frequency ranges from 0 to 5 Hz.
$$\begin{align} & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=62.832 \\ & {{k}_{eq}}=m\omega _{m}^{2}=\frac{500}{9.81}{{62.832}^{2}}=20.1857\cdot {{10}^{4}}N/m=4k \\ & k=50464.25N/m \\ & k=\frac{G{{d}^{4}}}{8n{{D}^{3}}} \\ & D=\sqrt[3]{\frac{8kn}{G{{d}^{4}}}}=0.0291492m=2.91492cm \\ \end{align}$$

Example 2.12
Find the natural frequency of the system shown in next figure with and without the springs k1 and k2 in the middle of the elastic beam.

 

Example 2.13
Find the natural frequency of the pulley system shown in next figure by neglecting the friction
and the masses of the pulleys.


Let x1,x2 represents displacements of pulleys 1 and 2
x=x1+x2
Let P be the tension in rope
For equilibrium of pulley 1
2P=k*x1
For equilibrium of pulley 2
2P=k*x2
$$\begin{align} & \frac{1}{{{k}_{1}}}=\frac{1}{4k}+\frac{1}{4k}=\frac{1}{2k} \\ & {{k}_{1}}=2k \\ & {{k}_{2}}=k+k=2k \\ & x=2{{x}_{1}}+2{{x}_{2}}=2\left( \frac{2P}{{{k}_{1}}} \right)+2\left( \frac{2P}{{{k}_{2}}} \right) \\ & x=4P\left( \frac{1}{2k}+\frac{1}{2k} \right)=\frac{4P}{k} \\ & {{k}_{eq}}=\frac{P}{x}=\frac{k}{4} \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{k}{4m}} \\ \end{align}$$
Example 2.14
A weight W is supported by three frictionless and massless pulleys and a spring of stiffness k, as shown in next figure. Find the natural frequency of vibration of weight W for small oscillations.
$$\begin{align} & m\ddot{x}+{{F}_{0}}=0 \\ & {{F}_{0}}=2{{F}_{1}}=4{{F}_{2}}=8{{F}_{3}} \\ & {{F}_{3}}=8xk \\ & m\ddot{x}+64kx=0 \\ & {{\omega }_{n}}=\sqrt{\frac{64k}{m}}=8\sqrt{\frac{k}{m}} \\ \end{align}$$

Example 2.15
A rigid block of mass M is mounted on four elastic supports, as shown in Fig. 2.58. A mass m drops from a height l and adheres to the rigid block without rebounding. If the spring constant
of each elastic support is k, find the natural frequency of vibration of the system (a) without the mass m, and (b) with the mass m. Also find the resulting motion of the system in case (b).


Example 2.16
A sledgehammer strikes an anvil with a velocity of 20 m/sec. The hammer and the anvil weigh 50 N and 500 N, respectively. The anvil is supported on four springs, each of stiffness k=20 kn/m Find the resulting motion of the anvil (a) if the hammer remains in contact with the anvil and (b) if the hammer does not remain in contact with the anvil after the initial impact.


Solution:
a)Velocity of hammer v= 20m/s, x=0 at static equilibrium postion
$$\begin{align} & {{x}_{0}}=x(t=0)=-\frac{W}{{{k}_{eq}}}=-\frac{mg}{4k} \\ & \left( M+m \right){{{\dot{x}}}_{0}}=mv \\ & {{{\dot{x}}}_{0}}=\dot{x}(t=0)=\frac{mv}{M+m} \\ & {{\omega }_{n}}=\sqrt{\frac{4k}{M+m}} \\ & x\left( t \right)={{A}_{0}}\sin \left( {{\omega }_{n}}t+{{\phi }_{0}} \right) \\ & {{A}_{0}}={{\left[ x_{0}^{2}+{{\left( \frac{{{x}_{0}}}{{{\omega }_{n}}} \right)}^{2}} \right]}^{\frac{1}{2}}}={{\left[ \frac{{{m}^{2}}{{g}^{2}}}{16{{k}^{2}}}+\frac{{{m}^{2}}{{v}^{2}}}{\left( M+m \right)4k} \right]}^{\frac{1}{2}}}=0.04816\text{ m} \\ & {{\phi }_{0}}={{\tan }^{-1}}\left( \frac{g\sqrt{M+m}}{v\sqrt{4k}} \right)=-0.7436\deg \\ \end{align}$$
b)x=0 at static equilibrium position:
$$\begin{align} & {{x}_{0}}=0 \\ & M{{{\dot{x}}}_{0}}=mv \\ & x(t)={{A}_{0}}\sin \left( {{\omega }_{n}}t+{{\phi }_{0}} \right) \\ & {{A}_{0}}={{\left[ x_{0}^{2}+{{\left( \frac{{{{\dot{x}}}_{0}}}{{{\omega }_{n}}} \right)}^{2}} \right]}^{\frac{1}{2}}}=0.0505\text{ m} \\ & \phi {}_{0}={{\tan }^{-1}}\left[ \frac{{{x}_{0}}{{\omega }_{n}}}{{{{\dot{x}}}_{0}}} \right]={{\tan }^{-1}}(0)=0 \\ \end{align}$$

Example 2.17
Derive the expression for the natural frequency of the system shown in next figure. Note that
the load W is applied at the tip of beam 1 and midpoint of beam 2.

$$\begin{align} & {{k}_{1}}=\frac{3{{E}_{1}}{{I}_{1}}}{l_{1}^{3}} \\ & {{k}_{2}}=\frac{48{{E}_{2}}{{I}_{2}}}{l_{2}^{3}} \\ & {{k}_{eq}}={{k}_{1}}+{{k}_{2}}=\frac{3{{E}_{1}}{{I}_{1}}}{l_{1}^{3}}+\frac{48{{E}_{2}}{{I}_{2}}}{l_{2}^{3}} \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\left( \frac{3{{E}_{1}}{{I}_{1}}}{l_{1}^{3}}+\frac{48{{E}_{2}}{{I}_{2}}}{l_{2}^{3}} \right)\frac{g}{W}} \\ \end{align}$$
Example 2.18
A heavy machine weighing 9,810 N is being lowered vertically down by a winch at a uniform velocity of 2 m/s. The steel cable supporting the machine has a diameter of 0.01 m. The winch is suddenly stopped when the steel cable s length is 20 m. Find the period and amplitude of the ensuing vibration of the machine.
$$\begin{align} & k=\frac{AE}{l}=\frac{\left\{ \frac{\pi }{4}\cdot {{0.01}^{2}} \right\}\left\{ 2.07\cdot {{10}^{11}} \right\}}{20}=0.8129\cdot {{10}^{6}}\text{ N/m} \\ & m=1000\text{ kg} \\ & {{\omega }_{n}}=\sqrt{\frac{k}{m}}={{\left( \frac{0.8129\cdot {{10}^{6}}}{1000} \right)}^{\frac{1}{2}}}=28.5114\text{ rad/s} \\ & {{{\dot{x}}}_{0}}=2m/s \\ & {{x}_{0}}=0 \\ & {{\tau }_{n}}=\frac{2\pi }{{{\omega }_{n}}}=\frac{2\pi }{28.5114}0.2204\text{ s} \\ & A=\frac{{{{\dot{x}}}_{0}}}{{{\omega }_{n}}}=\frac{2}{28.5114}=0.07015\text{ m} \\ \end{align}$$
Example 2.19
The natural frequency of a spring-mass system is found to be 2 Hz. When an additional mass of 1 kg is added to the original mass m, the natural frequency is reduced to 1 Hz. Find the spring constant k and the mass m.
$$\begin{align} & {{\omega }_{n}}=2Hz=12.5664\text{ rad/s}=\sqrt{\frac{k}{m}} \\ & \sqrt{k}=12.5664\sqrt{m} \\ & {{\omega }_{n}}'=\sqrt{\frac{k'}{m'}}=\sqrt{\frac{k}{m+1}}=6.2832\text{ rad/s} \\ & \sqrt{k}=6.2832\sqrt{m+1} \\ & \sqrt{k}=12.5664\sqrt{m} \\ & \sqrt{m+1}=2\sqrt{m} \\ & m=\frac{1}{3}kg \\ & k={{\left( 12.5664 \right)}^{2}}m=52.6381\text{ N/m} \\ \end{align}$$
Example 2.20
An electrical switch gear is supported by a crane through a steel cable of length 4 m and diameter 0.01 m. If the natural time period of axial vibration of the switch gear is found to be 0.1 s, find the mass of the switch gear.
$$\begin{align} & k=\frac{AE}{l}=\frac{1}{4}\left( \frac{\pi }{4}{{0.01}^{2}} \right)2.07\cdot {{10}^{11}}=4.0644\cdot \text{1}{{\text{0}}^{6}}\text{N/m} \\ & {{\tau }_{n}}=0.1=\frac{1}{{{f}_{n}}}=\frac{2\pi }{{{\omega }_{n}}} \\ & {{\omega }_{n}}=\frac{2\pi }{0.1}=20\pi =\sqrt{\frac{k}{m}} \\ & m=\frac{k}{\omega _{n}^{2}}=\frac{4.0644\cdot \text{1}{{\text{0}}^{6}}}{{{\left( 20\pi \right)}^{2}}}=1029.53\text{ kg} \\ \end{align}$$
Example 2.21
Four weightless rigid links and a spring are arranged to support a weight W in two different ways, as shown in. Determine the natural frequencies of vibration of the two arrangements.

$$\begin{align} & b=2l\sin \theta \\ & a){{k}_{eq}}=k\left( \frac{4{{l}^{2}}-{{b}^{2}}}{{{b}^{2}}} \right)=k\left( \frac{4{{l}^{2}}-4{{l}^{2}}{{\sin }^{2}}\theta }{4{{l}^{2}}{{\sin }^{2}}\theta } \right) \\ & {{k}_{eq}}=k\left( \frac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right) \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{kg{{\cot }^{2}}\theta }{W}} \\ & b){{\omega }_{n}}=\sqrt{\frac{kg}{W}}\Rightarrow {{k}_{eq}}=k \\ \end{align}$$
Example 2.22
A scissors jack is used to lift a load W. The links of the jack are rigid and the collars can slide freely on the shaft against the springs of stiffness’s k1 and k2. Find the natural frequency of vibration of the weight in the vertical direction.

$$\begin{align} & y=\sqrt{{{l}^{2}}-\left( l\sin \theta -x \right){}^{2}}-l\cos \theta \\ & y=\sqrt{{{l}^{2}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)-\left( l\sin \theta -x \right){}^{2}}-l\cos \theta \\ & y=l\cos \theta \sqrt{1-\frac{{{x}^{2}}}{{{l}^{2}}{{\cos }^{2}}\theta }+\frac{2lx\sin \theta }{{{l}^{2}}{{\cos }^{2}}\theta }}-l\cos \theta \\ & \frac{1}{2}{{k}_{eq}}{{x}^{2}}=\frac{1}{2}{{k}_{1}}{{y}^{2}}+\frac{1}{2}{{k}_{2}}{{y}^{2}} \\ & y=l\cos \theta \left( 1-\frac{1}{2}\frac{{{x}^{2}}}{{{l}^{2}}{{\cos }^{2}}\theta }+\frac{1}{2}\frac{2lx\sin \theta }{{{l}^{2}}{{\cos }^{2}}\theta } \right)-l\cos \theta \\ & y=\frac{x\sin \theta }{\cos \theta }=x\tan \theta \\ & {{k}_{eq}}=\left( {{k}_{1}}+{{k}_{2}} \right){{\tan }^{2}}\theta \\ & m\ddot{x}+{{k}_{eq}}x=0 \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{\left( {{k}_{1}}+{{k}_{2}} \right)}{W}}\tan \theta \\ \end{align}$$
Example 2.23
A weight is suspended using six rigid links and two springs in two different ways, as shown in next figure. Find the natural frequencies of vibration of the two arrangements.


$$\begin{align} & a){{k}_{eq}}=\frac{k}{2} \\ & m\ddot{x}+{{k}_{eq}}x=0 \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{k}{2m}} \\ & b){{x}_{s}}=x\frac{2}{b}\sqrt{{{l}^{2}}-\frac{{{b}^{2}}}{4}} \\ & \frac{1}{2}{{k}_{eq}}{{x}^{2}}=2\left( \frac{1}{2}kx_{s}^{2} \right) \\ & {{k}_{eq}}=2k{{\left( \frac{{{x}_{s}}}{k} \right)}^{2}}=2k\left( \frac{4}{{{b}^{2}}} \right)\left( {{l}^{2}}-\frac{{{b}^{2}}}{4} \right) \\ & {{k}_{eq}}=\frac{8k}{{{b}^{2}}}\left( {{l}^{2}}-\frac{{{b}^{2}}}{4} \right) \\ & m\ddot{x}+{{k}_{eq}}x=0 \\ & {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{8k}{{{b}^{2}}m}\left( {{l}^{2}}-\frac{{{b}^{2}}}{4} \right)} \\ \end{align}$$
Example 2.24
Next figure shows a small mass m restrained by four linearly elastic springs, each of which has an un-stretched length l, and an angle of orientation of 45 with respect to the x-axis. Determine the equation of motion for small displacements of the mass in the x direction.


$$\begin{align} & {{F}_{1}}={{F}_{3}}={{k}_{1}}x\cos 45 \\ & {{F}_{2}}={{F}_{4}}={{k}_{2}}x\sin 135 \\ & F={{F}_{1}}\cos 45+{{F}_{2}}\cos 135+{{F}_{3}}\cos 45+{{F}_{4}}\cos 135 \\ & F=2x({{k}_{1}}co{{s}^{2}}45+{{k}_{2}}co{{s}^{2}}135) \\ & {{k}_{eq}}=\frac{F}{x}=2\left( \frac{{{k}_{1}}}{2}+\frac{{{k}_{2}}}{2} \right)={{k}_{1}}+{{k}_{2}} \\ & m\ddot{x}+({{k}_{1}}+{{k}_{2}})x=0 \\ \end{align}$$

2 komentara: