Example 1.1
The spring system is
connected to a crosshead that oscillates vertically when the wheel rotates with
a constant angular velocity of ω. If the amplitude of the steady-state
vibration is observed to be 400 mm, and the springs each have a stiffness k=2500
N/m, determine the two possible values of ω at which the wheel must rotate. The
block has a mass of 50 kg.
$$\begin{align}
& Y=0.4m \\
& k=2500N/m \\
& \underline{m=50kg} \\
& {{k}_{eq}}=2k=2\left( 2500 \right)=5000 \\
& {{\omega }_{n}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{5000}{50}}=10\text{ rad/s} \\
& {{\left( {{Y}_{P}} \right)}_{\max }}=\frac{{{\delta }_{0}}}{1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}} \\
& \pm 0.4=\frac{0.2}{1-{{\left( \frac{\omega }{10} \right)}^{2}}} \\
& {{\left( \frac{\omega }{10} \right)}^{2}}=1\pm 0.5 \\
& \frac{{{\omega }_{1}}^{2}}{100}=1.5\Rightarrow 12.2\text{ rad/s} \\
& \frac{{{\omega }_{2}}^{2}}{100}=0.5\Rightarrow 7.07\text{ rad/s} \\
\end{align}$$
Example 1.2
If
the 30 kg block is subjected to a periodic force of 300 sin 5*t, k=1500 N/m,
and c=300 Ns/m
$$\begin{align}
& {{k}_{eq}}=2k=2\left( 1500 \right)=3000\text{ N/m} \\
& {{\omega }_{eq}}=\sqrt{\frac{{{k}_{eq}}}{m}}=\sqrt{\frac{3000}{30}}=10\text{ rad/s} \\
& {{\text{c}}_{c}}=2m{{\omega }_{n}}=2\cdot 30\cdot 10=600\text{ Ns/m} \\
& \frac{c}{{{c}_{c}}}=\frac{300}{600}=0.5 \\
& Y=\frac{\frac{{{F}_{0}}}{{{k}_{eq}}}}{\sqrt{{{\left[ 1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}} \right]}^{2}}+{{\left[ \left( 2\frac{c}{{{c}_{c}}} \right)\left( \frac{\omega }{{{\omega }_{n}}} \right) \right]}^{2}}}} \\
& Y=\frac{\frac{300}{3000}}{\sqrt{{{\left[ 1-{{\left( \frac{5}{10} \right)}^{2}} \right]}^{2}}+{{\left[ \frac{2\cdot 0.5\cdot 5}{10} \right]}^{2}}}} \\
& Y=0.1109\text{ m} \\
& {{\text{y}}_{P}}=0.111\sin \left( 5t-0.588 \right)\text{ m} \\
\end{align}$$
Example 1.3
Determine the
differential equation of motion for the damped vibratory system shown. What
type of motion occurs?
$$\begin{align}
& \sum{{{F}_{y}}=m{{a}_{y}};} \\
& mg-k\left( y+{{y}_{st}} \right)-2c\dot{y}=m\ddot{y}, \\
& m\ddot{y}+ky+2c\dot{y}+k{{y}_{st}}-mg=0, \\
& k{{y}_{st}}-mg=0, \\
& m\ddot{y}+2c\dot{y}+ky=0 \\
& 25\ddot{y}+400\dot{y}+100y=0 \\
& \ddot{y}+16\dot{y}+4y=0 \\
& {{\omega }_{n}}=\sqrt{\frac{k}{m}}=\sqrt{\frac{4}{1}}=2\text{ rad/s} \\
& {{\text{c}}_{c}}=2m{{\omega }_{n}}=2\cdot 25\cdot 2=100\text{ Ns/m} \\
\end{align}$$
Since damping of the
system is larger than the critical damping the system will not vibrate. In
conclusion the system is overdamped.
Nema komentara:
Objavi komentar