Loading [MathJax]/jax/output/HTML-CSS/jax.js

Multi-Degree of Freedom Systems - Examples 1-5

Example 1 - Derive the differential equation of motion for the system shown in the following figure.


m1¨x1=kx15k(x1x3)k(x1x2)+F1(t)m2¨x2=k(x2x1)k(x2x3)+F2(t)m3¨x3=5k(x3x1)k(x3x2)+F3(t)_m1¨x1+(7x1x25x3)k=F1(t)m2¨x2+(x1+2x2x3)k=F2(t)m3¨x3+(5x11x2+7x3)k=F3(t)

Or in matrix form
[m1000m2000m3](¨x1¨x2¨x3)+k[715121517](x1x2x3)=(F1(t)F2(t)F3(t))


Nema komentara:

Objavi komentar