Example 1 - Derive the differential equation of motion
for the system shown in the following figure.
$$\begin{align} & {{m}_{1}}{{{\ddot{x}}}_{1}}=-k{{x}_{1}}-5k\left( {{x}_{1}}-{{x}_{3}} \right)-k\left( {{x}_{1}}-{{x}_{2}} \right)+{{F}_{1}}\left( t \right) \\ & {{m}_{2}}{{{\ddot{x}}}_{2}}=-k\left( {{x}_{2}}-{{x}_{1}} \right)-k\left( {{x}_{2}}-{{x}_{3}} \right)+{{F}_{2}}\left( t \right) \\ & \underline{{{m}_{3}}{{{\ddot{x}}}_{3}}=-5k\left( {{x}_{3}}-{{x}_{1}} \right)-k\left( {{x}_{3}}-{{x}_{2}} \right)+{{F}_{3}}\left( t \right)} \\ & {{m}_{1}}{{{\ddot{x}}}_{1}}+\left( 7{{x}_{1}}-{{x}_{2}}-5{{x}_{3}} \right)k={{F}_{1}}\left( t \right) \\ & {{m}_{2}}{{{\ddot{x}}}_{2}}+\left( -{{x}_{1}}+2{{x}_{2}}-{{x}_{3}} \right)k={{F}_{2}}\left( t \right) \\ & {{m}_{3}}{{{\ddot{x}}}_{3}}+\left( -5{{x}_{1}}-1{{x}_{2}}+7{{x}_{3}} \right)k={{F}_{3}}\left( t \right) \\ \end{align}$$
Or in matrix form
$$\left[ \begin{matrix}
{{m}_{1}} & 0 & 0 \\
0 & {{m}_{2}} & 0 \\
0 & 0 & {{m}_{3}} \\
\end{matrix} \right]\left( \begin{matrix}
{{{\ddot{x}}}_{1}} \\
{{{\ddot{x}}}_{2}} \\
{{{\ddot{x}}}_{3}} \\
\end{matrix} \right)+k\left[ \begin{matrix}
7 & -1 & -5 \\
-1 & 2 & -1 \\
-5 & -1 & 7 \\
\end{matrix} \right]\left( \begin{matrix}
{{x}_{1}} \\
{{x}_{2}} \\
{{x}_{3}} \\
\end{matrix} \right)=\left( \begin{matrix}
{{F}_{1}}\left( t \right) \\
{{F}_{2}}\left( t \right) \\
{{F}_{3}}\left( t \right) \\
\end{matrix} \right)$$
Nema komentara:
Objavi komentar