Processing math: 1%

Solved Examples - Determination of Natural Frequencies and Mode Shapes

Example 1 - Estimate the fundamental natural freuqency of a simply supported beam carrying three indetical equally spaced measses as shown in Figure 1.
Figure 1 - Simply supported beam with three bodies of masses m_1, m_2, and m_3.
Solution - The flexibility influence coefficient required for the application of Dunkerley's formula are given by: \begin{eqnarray} a_{11} &=& a_{33} =\frac{3}{256}\frac{l^2}{EI}\nonumber\\ a_{22} &=& \frac{1}{48}\frac{l^3}{EI}\nonumber \end{eqnarray} The masses m_1, m_2, and m_3 are equal. \begin{eqnarray} \frac{1}{\omega_1^2} &=& \left(\frac{3}{256} + \frac{1}{48} + \frac{3}{256}\right)\frac{ml^3}{EI} = 0.04427\frac{ml^3}{EI}\nonumber\\ &=& 4.75375\sqrt{\frac{EI}{ml^3}}\nonumber \end{eqnarray}
Example 2 Estimate the fundamental frequency of vibration of the system shown in Figure 2. Assume that m_1=m_2=m_3 = m, and k_1 = k_2 = k_3 = k, and the mode shape is \vec{X} = \begin{Bmatrix}1\\2\\3 \end{Bmatrix}.
Figure 2 - Three degree of freedom system which consist of three springs with stiffness k_1 = k_2 = k_3 = k and three bodies with masses m_1 = m_2 = m_3 = m.
Solution: The stiffness and mass matrices of the system are: \begin{eqnarray} \mathrm{\mathbf{K}} &=& k\begin{bmatrix}2&-1&0\\ -1&2&-1\\ 0&-1&1\end{bmatrix}\nonumber\\ \mathrm{\mathbf{M}} &=& m\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\nonumber \end{eqnarray} Substituting the assumed mode shape in the expression for Rayleigh's quotient, the following is obtained: \begin{eqnarray} R(\vec{X}) &=& \omega^2 = \frac{\vec{X}^T\mathrm{\mathbf{K}}\vec{X}}{\vec{X}^T\mathrm{\mathbf{M}}\vec{X}} = \frac{\begin{pmatrix}1&2&3\end{pmatrix}k\begin{bmatrix}2&-1&0\\ -1&2&-1\\ 0&-1&1\end{bmatrix} \begin{Bmatrix}1\\2\\3 \end{Bmatrix}}{\begin{pmatrix}1&2&3\end{pmatrix}m\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\begin{Bmatrix}1\\2\\3 \end{Bmatrix}}\nonumber\\ R(\vec{X}) &=& 0.2143 \frac{k}{m}\nonumber\\ \omega_1 &=& 0.4629 \sqrt{\frac{k}{m}}\nonumber \end{eqnarray} Example 3 Estimate the fundamental frequency of the lateral vibration of a shaft carrying three rotors (masses), as shown in Figure 3 with m_1 = 20 kg, m_2 = 50 kg, m_3 = 40 kg, l_1 = 1 m, l_2 = 3m, l_3 = 4 m, and l_4 = 2 m. The shaft is made of steel with a solid circular cross section of diameter 10 cm.
Figure 3 - Shaft with three different bodies with masses m_1, m_2, and m_3.

In Figure 4 the position of load P that is causing deflection, is shown.
Figure 4 - Beam under static load P.
Solution: The deflection of the beam shown in Figure 4 due to the static load P can be written as: \begin{eqnarray} w(x) &=& \begin{cases} \frac{Pbx}{6EIl}(l^2 - b^2 -x^2) \quad 0 \leq x \leq a\\ -\frac{Pa(l-x)}{6EIl}(a^2 + x^2 -2lx) \quad a\leq x\leq l\end{cases}\nonumber \end{eqnarray} Before calculating natural freuqency of the system it is neceassary to obtain the total deflections caused by the bodies with massess m_1, m_2, and m_3. To obtain the total deflection caused by these bodies it is necessary to investigate and calculate the deflections caused by each body and in each analysis neglected the remaining two bodies. Deflection due to the weight of m_1 at the location of mass m_1: \begin{eqnarray} w_1' &=& \frac{20\cdot 9.81 \cdot 9 \cdot 1}{6EI\cdot 10} (100-81.1) = \frac{529.74}{EI}\nonumber \end{eqnarray} A the location m_2: \begin{eqnarray} w_2' &=& -\frac{20\cdot 9.81 \cdot 1 \cdot 6}{6EI\cdot 10} ( 1+ 16-2\cdot 10 \cdot 4) = \frac{1236.06}{EI} \end{eqnarray} At the location of m_3: \begin{eqnarray} w_3' &=& -\frac{20\cdot 9.81 \cdot 1 \cdot 2}{6EI\cdot 10} (1+64-2\cdot 10 \cdot 8) = \frac{621.3}{EI}\nonumber \end{eqnarray} The deflection caused by the weight m_2. At the location of m_1: \begin{eqnarray} w_1'' &=& \frac{Pbx}{6EIl}(l^2 - b^2 - x^2) \nonumber\\ &=& \frac{5\cdot 9.81\cdot 6 \cdot 1}{6\cdot 10 EI}(100-36-1) \nonumber\\ &=& \frac{3090.15}{EI}.\nonumber \end{eqnarray} At the location of m_2 using the first equation of w(x): \begin{eqnarray} w_2'' &=& \frac{Pbx}{6EIl}(l^2 - b^2 - x^2)\nonumber\\ &=& \frac{50\cdot 9.831 \cdot 6 \cdot 4}{6EI\cdot 10}(100-36-16)\nonumber\\ &=& \frac{9417.6}{EI}.\nonumber \end{eqnarray} At the location of m_3 using the second equation of w(x): \begin{eqnarray} w_3''&=& -\frac{Pa(l-x)}{6EIl}(a^2 + x^2 - 2lx)\nonumber\\ &=& -\frac{50\cdot 9.81 \cdot 4 \cdot 2}{6\cdot 10 \cdot EI}(16+64-2\cdot 10\cdot 8)\nonumber \\ &=& \frac{5232.0}{EI}.\nonumber \end{eqnarray} Deflection caused by the weight of m_3 at the location of m_1 with a use of the first equation of w_(x): \begin{eqnarray} w_1''' &=& \frac{Pbx}{6EIl}(l^2 - b^2 - x^2)\nonumber\\ &=& \frac{40\cdot 9.81\cdot 2 \cdot 1}{6\cdot 10 EI}(100-4-1)\nonumber\\ &=& \frac{1242.6}{EI}.\nonumber \end{eqnarray} At the location of m_2 using first equation of w(x) the w_2''' is equal to: \begin{eqnarray} w_2'''&=&\frac{Pbx}{6EIl}(l^2 - b^2 - x^2)\nonumber\\ &=& \frac{40\cdot 9.81\cdot 2 \cdot 4}{6\cdot 10 EI}(100-4-16)\nonumber\\ &=& \frac{4185.6}{EI}.\nonumber \end{eqnarray} A the location the m_3 using first equation of w(x) the w_3''' is equal to: \begin{eqnarray} w_3'''&=& \frac{Pbx}{6EIl}(l^2 - b^2 - x^2)\nonumber\\ &=& \frac{40\cdot 9.81\cdot 2 \cdot 8}{6\cdot 10 EI}(100-4-64)\nonumber\\ &=& \frac{3348.48}{EI}.\nonumber \end{eqnarray} The total deflections of the bodies with mass m_1,m_2, and m_3 are equal to: \begin{eqnarray} w_1 &=& w_1' + w_1'' + w_1''' = \frac{4962.49}{EI},\nonumber\\ w_2 &=& w_2' + w_2'' + w_2''' = \frac{14839.26}{EI},\nonumber\\ w_3 &=& w_3' + w_3'' + w_3''' = \frac{9201.78}{EI}.\nonumber\\ \end{eqnarray} The general form of natural frequency equation for specific case can be wirtten as: \begin{eqnarray} \omega &=& \sqrt{\frac{g(m_1 w_1 + m_2 w_2 + m_3w_3)}{m_1w_1^2 + m_2w_2^2 + m_3w_3^2}}.\nonumber \end{eqnarray} By substituting masses and deflections into previous equation the natural frequency can be written as: \begin{eqnarray} \omega &=& \sqrt{\frac{9.81\cdot(20\cdot 4862.49 + 50\cdot 14839.26 + 40\cdot 9201.78)EI}{20\cdot (4862.49)^2 + 50\cdot (14839.26)^2 + 40\cdot 9201.78^2 }}\nonumber \\ \omega &=& 0.028222\sqrt{EI}\nonumber \end{eqnarray}

Nema komentara:

Objavi komentar