Example 7.1
Derive the stiffness
matrix of the tapered bar element (which deforms in the axial direction) shown
in next figure. The diameter of the bar decreases from D to d over its length.
As diameter h(x)=D at
x=0 and h(x)=d at x=l, we have
h(x)=D+(d−Dl)xI)Stiffness matrix:V(t)=strain energy of element=12l∫0EA(∂u∂x)2dxu(x,t)=(1−xl)u1(t)+(xl)u2(t)A(x)=πh24=π4[D2+2D(d−Dl)x+(d−Dl)2x2]Thus the strain energy expression becomes:V=πE24l(D2+d2+dD)(u21+u22−2u1u2)V=12→uT[k]→u=12(u1 u2)[k11k12k21k22]{u1u2}This gives the element matrix as:[k]=πE12l(D2+d2+dD)[1−1−11]II)Consistent mass matrix:T(t)=12l∫0ρA(∂u∂t)2dx˙u(x,t)=∂u∂t(x,t)=(1−xl)˙u1(t)+(xl)˙u2(t)T=12l∫0ρπ4{D2+2D(d−Dl)x+(d−Dl)2x2}{˙u21+x(−2l˙u21−2l˙u1˙u2)+x2(˙u21l2+˙u22l2−2˙u1˙u2l2)}dxT=12(˙u1 ˙u2)[m11m12m21m22]{˙u1˙u2}[mc]=πρl4[(D25+d230+Dd10)(D220+d220+Dd15)(D220+d220+Dd15)(D230+d25+Dd10)]
III)Lumped mass matrix:M=πρ4l∫0h2(x)dxM=πρl4(D2+d2Dd)M=πρl4[(D2+d2+Dd)00(D2+d2+Dd)]
Example 7.2
Derive the stiffness
matrix of the bar element in longitudinal vibration whose cross-sectional area
varies as A(x) = A0Exp(-(x/t)) where A0 is the area at the root.
Assume linear
displacement model
u(x)=α1+α2x=U1+(U2−U1l)xεx=∂u∂x=U2−U1lσx=Eεx=E(U2−U1l)V(x)=∭V(e)12σxεxdV=12l∫x=0E(U2−U1l)2A(x)dxV(x)=E2l2(U2−U1)2lA0(1−1e)V(x)=12→UT[K]→U=12(U1 U2)[k]{U1U2}[k]=EA0l(0.6321)[1−1−11]
Example 7.3
The tapered cantilever
beam shown in next figure is used as a spring to carry a load P. Derive the
stiffness matrix of the beam using a one-element idealization. Assume b = 10
cm, t = 2.5 cm, l = 2 m, E = 2.07 * 1011 N/m2, and P = 1000 N.
w(x)=B−(B−bl)xI(x)=112w(x)t3=Bt312−((B−b)t312l)x=a1−a2xa1=Bt312;a2=(B−b)t312l;Deflection of beam:w(x)=4∑i=1Ni(x)WiN1(x)=1−3(xl)2+2(xl)3N2(x)=x−2l(xl)2+l(xl)3N3(x)=3(xl)2−2(xl)3N3(x)=−l(xl)2+l(xl)3w(x)=N1(x)+N2(x)+N3(x)+N4(x)w(x)=1+x−3l(xl)2+2l(xl)3Strain energy of element is given byV=12l∫0EI(x)(d2w(x)dx2)2dxd2N1(x)dx2=−6l2+12l3x,d2N2(x)dx2=−4l+6l2x,d2N3(x)dx2=6l2+12l3x,d2N4(x)dx2=−2l+12l2x,(d2w(x)dx2)2=c21+c22+2c1c2x=(c1+c2x)2c1=−6l2W1−4lW2+6l2W3−2lW4c2=12l3W1+6l2W2−12l3W3+6l2W4
V=12E{W21[36l4(a1l−a2l22)−72l5+144l6(a1l33−a2l44)]+W22[16l2(a1l−a2l22)−24l4(a1l2−2a2l33)+36l4(a1l33−a2l44)]+W23[36l4(a1l−a2l22)−72l5(a1l2−2a2l33)+144l6(a1l33−a2l44)]+W24[4l2(a1l−a2l22)−12l3(a1l2−2a2l33)+36l4(a1l33−a2l44)]+2W1W2[24l3(a1l−a2l22)−42l4(a1l2−2a2l33)+72l5(a1l33−a2l44)]+2W1W3[−36l4(a1l−a2l22)+72l5(a1l2−2a2l33)−144l6(a1l33−a2l44)]+2W1W4[12l3(a1l−a2l22)−30l4(a1l2−2a2l33)+72l5(a1l33−a2l44)]+2W2W3[−24l3(a1l−a2l22)+42l4(a1l2−2a2l33)−72l5(a1l33−a2l44)]+2W2W4[8l2(a1l−a2l22)−18l3(a1l2−2a2l33)+36l4(a1l33−a2l44)]+2W3W4[−12l3(a1l−a2l22)+30l4(a1l2−2a2l33)−72l5(a1l33−a2l44)]}Bywriting:V=12→WT[k]→W→W={W1W2W3W4},thestiffness matrix can be identified.
Defining a1=Bt312,d1=(B−b)t312,a2=d1l,a2l=d1the elements of [k]can be expressed as:k11=E{a1(12l3)−d1(6l3)},k22=E{a1(4l)−d1(1l)},k33=E{a1(12l3)−d1(6l3)},k11=E{a1(4l)−d1(3l)},k12=E{a1(6l2)−d1(2l2)},k13=E{a1(−12l3)+d1(6l3)},k14=E{a1(6l2)−d1(4l2)},k23=E{a1(−6l2)+d1(2l2)},k24=E{a1(2l)−d1(1l)},k34=E{a1(−6l2)+d1(4l2)},b)Stressesinducedinthebeam:B=0.25mb=0.10mt=0.025ml=2mE=2.07⋅1011N/m2P=1000Na1=32552.0833⋅10−11d119531.25⋅10−11Stiffness matrix can be computed as:[k]=W1 W2 W3 W4[7075080860−707506064080860114600−8086047170−70750−8086070750−606406064047170−6064074120]W1W2W3W4Equilibrium equations:[k]→W=→F[70750−60640−6064074120]{W3W4}={01000}The solution of these equations is:W3=0.03871 mW4=0.04516 mstress at root:σmax|x=0=MymaxI|x=0=EI(x)d2w(x)dx2ymaxI(x)|x=0=3.3392⋅107N/m2
Example 7.4
A(i)=13⋅10−4m2,i=1,2,3,4E=200⋅109N/m2l(1)=√1.252+2.502=2.795085ml(2)=√1.252+2.502=2.795085ml(1)=√3.752+1.252=3.952847ml(1)=√2.52+3.752=4.506939m[k(i)]=E(i)A(i)l(i)[1−1−11][¯k(i)]=[λ(i)]T[k(i)][λi][λi]=[cosθisinθi0000cosθisinθi][¯k(i)]=E(i)A(i)l(i)[cos2θicosθisinθi−cos2θi−cosθisinθicosθisinθisin2θi−cosθisinθi−sin2θi−cos2θi−cosθisinθicos2θicosθisinθi−cosθisinθi−sin2θicosθisinθisin2θi]θ1=63.4349∘θ2=116.5651∘θ3=18.4350∘θ4=56.3099∘E(1)A(1)l(1)=200⋅109⋅13⋅10−42.795085=93.0204⋅106N/m,cosθ1=0.4472,sinθ1=0.8944,[¯k(1)]=106U1 U2 U3 U4[18.604137.2082−18.6041−37.208237.208274.4162−37.2082−74.4162−18.6041−37.2082−18.604137.2082−37.2082−74.416237.208274.4162]U1U2U3U4
E(2)A(2)l(2)=200⋅109⋅13⋅10−42.795085=93.0204⋅106N/m,cosθ2=−0.4472,sinθ2=0.8944,[¯k(2)]=106U5 U6 U3 U4[18.604137.2082−18.604137.2082−37.208274.4162−37.2082−74.4162−18.604137.208218.6041−37.208237.2082−74.4162−37.208274.4162]U5U6U3U4E(3)A(3)l(3)=200⋅109⋅13⋅10−43.952847=65.7754⋅106N/m,cosθ3=0.9487,sinθ3=0.3162,[¯k(3)]=106U3 U4 U7 U8[59.197819.7326−59.1978−19.7326−19.73266.57757−19.7326−6.57757−59.1978−19.732659.1978−19.7326−19.7326−6.5775719.73266.57757]U3U4U7U8E(4)A(4)l(4)=200⋅109⋅13⋅10−44.506939=57.6888⋅106N/m,cosθ4=0.5547,sinθ4=0.8321,[¯k(4)]=106U5 U6 U7 U8[17.750426.6256−17.7504−26.625626.62566.57757−26.6256−6.57757−17.7504−26.625617.7504−26.6256−26.6256−6.5775726.62566.57757]U5U6U7U8
Example 7.5
Find the stresses in
the stepped beam shown in next figure when a moment of 1000 N-m is applied at
node 2 using a two-element idealization. The beam has a square cross section
50x50 mm between nodes 1 and 2 and 25x25 mm between nodes 2 and 3. Assume the Young
s modulus as 2.1 * 10^11 Pa.
Element1:I=112(501000)(501000)3=0.5208⋅10−6m4EIl3=2.1⋅1011⋅0.5208⋅10−60.253=0.7⋅107[k(1)]=0.7⋅107w1 w2 w3 w4[121.5−121.51.50.25−1.50.125−12−1.512−1.51.50.125−1.50.25]w1w2w3w4=0.7⋅107w3 w4[12−1.5−1.50.25]w3w4
Element2:I=112(251000)(251000)3=0.3255⋅10−7m4EIl3=2.1⋅1011⋅0.3255⋅10−70.43=10.6805⋅104[k(2)]=10.6805⋅104w3 w4 w5 w6[122.4−122.42.40.64−2.40.32−12−2.412−2.42.40.32−2.40.64]w3w4w5w6[k(2)]=10.6805⋅104w3 w4[122.42.40.64]w3w4
Assembled stiffness matrix:[K]=[8.4⋅107+0.1282⋅107−1.05⋅107+0.0256⋅107−1.05⋅107+0.0256⋅1070.175⋅107+0.0068⋅107]Equilibrium equations:107[8.5282−1.0244−1.02440.1818]{W3W4}={0103}W3=2.0446⋅10−4mW4=1.7021⋅10−3mStresses in elements:M=EId2w(x)dx2w(x)=4∑i=1WiNi(x)σmax=McI=Mh2I=Eh2d2w(x)dx2σmax=Eh2[W1l3(12x−6l)+W2l2(6x−4l)+W3l3(6l−12x)+W4l2(6x−2l)]For element 1:W1=0,W2=0,W3=2.0446⋅10−4,W4=1.7021⋅10−3,l=0.25,h=0.05,E=2.1⋅1011σmax|fixed end=σmax(x=0)=3.1560⋅107N/m2σmax|loaded end=σmax(x=0.25)=3.9929⋅107N/m2For element 2:W1=2.0446⋅10−4,W2=1.7021⋅10−3,W3=0,W4=0,l=0.4,h=0.025,E=2.1⋅1011σmax|loaded end=σmax(x=0)=−6.4807⋅107N/m2σmax|fixed end=σmax(x=0.4)=4.2467⋅107N/m2
Nema komentara:
Objavi komentar