Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Finite Element Method Examples 1-5

Example 7.1
Derive the stiffness matrix of the tapered bar element (which deforms in the axial direction) shown in next figure. The diameter of the bar decreases from D to d over its length.

As diameter h(x)=D at x=0 and h(x)=d at x=l, we have
h(x)=D+(dDl)xI)Stiffness matrix:V(t)=strain energy of element=12l0EA(ux)2dxu(x,t)=(1xl)u1(t)+(xl)u2(t)A(x)=πh24=π4[D2+2D(dDl)x+(dDl)2x2]Thus the strain energy expression becomes:V=πE24l(D2+d2+dD)(u21+u222u1u2)V=12uT[k]u=12(u1 u2)[k11k12k21k22]{u1u2}This gives the element matrix as:[k]=πE12l(D2+d2+dD)[1111]II)Consistent mass matrix:T(t)=12l0ρA(ut)2dx˙u(x,t)=ut(x,t)=(1xl)˙u1(t)+(xl)˙u2(t)T=12l0ρπ4{D2+2D(dDl)x+(dDl)2x2}{˙u21+x(2l˙u212l˙u1˙u2)+x2(˙u21l2+˙u22l22˙u1˙u2l2)}dxT=12(˙u1 ˙u2)[m11m12m21m22]{˙u1˙u2}[mc]=πρl4[(D25+d230+Dd10)(D220+d220+Dd15)(D220+d220+Dd15)(D230+d25+Dd10)] III)Lumped mass matrix:M=πρ4l0h2(x)dxM=πρl4(D2+d2Dd)M=πρl4[(D2+d2+Dd)00(D2+d2+Dd)]



Example 7.2
Derive the stiffness matrix of the bar element in longitudinal vibration whose cross-sectional area varies as A(x) = A0Exp(-(x/t)) where A0 is the area at the root.

Assume linear displacement model
u(x)=α1+α2x=U1+(U2U1l)xεx=ux=U2U1lσx=Eεx=E(U2U1l)V(x)=V(e)12σxεxdV=12lx=0E(U2U1l)2A(x)dxV(x)=E2l2(U2U1)2lA0(11e)V(x)=12UT[K]U=12(U1 U2)[k]{U1U2}[k]=EA0l(0.6321)[1111]



Example 7.3
The tapered cantilever beam shown in next figure is used as a spring to carry a load P. Derive the stiffness matrix of the beam using a one-element idealization. Assume b = 10 cm, t = 2.5 cm, l = 2 m, E = 2.07 * 1011 N/m2, and P = 1000 N.

w(x)=B(Bbl)xI(x)=112w(x)t3=Bt312((Bb)t312l)x=a1a2xa1=Bt312;a2=(Bb)t312l;Deflection of beam:w(x)=4i=1Ni(x)WiN1(x)=13(xl)2+2(xl)3N2(x)=x2l(xl)2+l(xl)3N3(x)=3(xl)22(xl)3N3(x)=l(xl)2+l(xl)3w(x)=N1(x)+N2(x)+N3(x)+N4(x)w(x)=1+x3l(xl)2+2l(xl)3Strain energy of element is given byV=12l0EI(x)(d2w(x)dx2)2dxd2N1(x)dx2=6l2+12l3x,d2N2(x)dx2=4l+6l2x,d2N3(x)dx2=6l2+12l3x,d2N4(x)dx2=2l+12l2x,(d2w(x)dx2)2=c21+c22+2c1c2x=(c1+c2x)2c1=6l2W14lW2+6l2W32lW4c2=12l3W1+6l2W212l3W3+6l2W4 V=12E{W21[36l4(a1la2l22)72l5+144l6(a1l33a2l44)]+W22[16l2(a1la2l22)24l4(a1l22a2l33)+36l4(a1l33a2l44)]+W23[36l4(a1la2l22)72l5(a1l22a2l33)+144l6(a1l33a2l44)]+W24[4l2(a1la2l22)12l3(a1l22a2l33)+36l4(a1l33a2l44)]+2W1W2[24l3(a1la2l22)42l4(a1l22a2l33)+72l5(a1l33a2l44)]+2W1W3[36l4(a1la2l22)+72l5(a1l22a2l33)144l6(a1l33a2l44)]+2W1W4[12l3(a1la2l22)30l4(a1l22a2l33)+72l5(a1l33a2l44)]+2W2W3[24l3(a1la2l22)+42l4(a1l22a2l33)72l5(a1l33a2l44)]+2W2W4[8l2(a1la2l22)18l3(a1l22a2l33)+36l4(a1l33a2l44)]+2W3W4[12l3(a1la2l22)+30l4(a1l22a2l33)72l5(a1l33a2l44)]}Bywriting:V=12WT[k]WW={W1W2W3W4},thestiffness matrix can be identified. Defining a1=Bt312,d1=(Bb)t312,a2=d1l,a2l=d1the elements of [k]can be expressed as:k11=E{a1(12l3)d1(6l3)},k22=E{a1(4l)d1(1l)},k33=E{a1(12l3)d1(6l3)},k11=E{a1(4l)d1(3l)},k12=E{a1(6l2)d1(2l2)},k13=E{a1(12l3)+d1(6l3)},k14=E{a1(6l2)d1(4l2)},k23=E{a1(6l2)+d1(2l2)},k24=E{a1(2l)d1(1l)},k34=E{a1(6l2)+d1(4l2)},b)Stressesinducedinthebeam:B=0.25mb=0.10mt=0.025ml=2mE=2.071011N/m2P=1000Na1=32552.08331011d119531.251011Stiffness matrix can be computed as:[k]=W1 W2 W3 W4[707508086070750606408086011460080860471707075080860707506064060640471706064074120]W1W2W3W4Equilibrium equations:[k]W=F[70750606406064074120]{W3W4}={01000}The solution of these equations is:W3=0.03871 mW4=0.04516 mstress at root:σmax



Example 7.4
For a dynamical system shown in next figure derive the local stiffness matrices of elements. 
\begin{align} & {{A}^{\left( i \right)}}=13\cdot {{10}^{-4}}{{m}^{2}},i=1,2,3,4 \\ & E=200\cdot {{10}^{9}}N/{{m}^{2}} \\ & {{l}^{\left( 1 \right)}}=\sqrt{{{1.25}^{2}}+{{2.50}^{2}}}=2.795085m \\ & {{l}^{\left( 2 \right)}}=\sqrt{{{1.25}^{2}}+{{2.50}^{2}}}=2.795085m \\ & {{l}^{\left( 1 \right)}}=\sqrt{{{3.75}^{2}}+{{1.25}^{2}}}=3.952847m \\ & {{l}^{\left( 1 \right)}}=\sqrt{{{2.5}^{2}}+{{3.75}^{2}}}=4.506939m \\ & \left[ {{k}^{\left( i \right)}} \right]=\frac{{{E}^{\left( i \right)}}{{A}^{\left( i \right)}}}{{{l}^{\left( i \right)}}}\left[ \begin{matrix} 1 & -1 \\ -1 & 1 \\ \end{matrix} \right] \\ & \left[ {{\overline{k}}^{\left( i \right)}} \right]={{\left[ {{\lambda }^{\left( i \right)}} \right]}^{T}}\left[ {{k}^{\left( i \right)}} \right]\left[ {{\lambda }^{i}} \right] \\ & \left[ {{\lambda }^{i}} \right]=\left[ \begin{matrix} \cos {{\theta }_{i}} & \sin {{\theta }_{i}} & 0 & 0 \\ 0 & 0 & \cos {{\theta }_{i}} & \sin {{\theta }_{i}} \\ \end{matrix} \right] \\ & \left[ {{\overline{k}}^{\left( i \right)}} \right]=\frac{{{E}^{\left( i \right)}}{{A}^{\left( i \right)}}}{{{l}^{\left( i \right)}}}\left[ \begin{matrix} {{\cos }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\cos }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} \\ \cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\sin }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\sin }^{2}}{{\theta }_{i}} \\ -{{\cos }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\cos }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} \\ -\cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\sin }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\sin }^{2}}{{\theta }_{i}} \\ \end{matrix} \right] \\ & {{\theta }_{1}}={{63.4349}^{\circ }} \\ & {{\theta }_{2}}={{116.5651}^{\circ }} \\ & {{\theta }_{3}}={{18.4350}^{\circ }} \\ & {{\theta }_{4}}={{56.3099}^{\circ }} \\ & \frac{{{E}^{\left( 1 \right)}}{{A}^{\left( 1 \right)}}}{{{l}^{\left( 1 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{2.795085}=93.0204\cdot {{10}^{6}}N/m, \\ & cos{{\theta }_{1}}=0.4472, \\ & \sin {{\theta }_{1}}=0.8944, \\ & \left[ {{\overline{k}}^{\left( 1 \right)}} \right]={{10}^{6}}\begin{matrix} \begin{matrix} {{U}_{1}}\text{ } & \text{ }{{U}_{2}}\text{ } & {{U}_{3}}\text{ } & {{U}_{4}} \\ \end{matrix} \\ \left[ \begin{matrix} 18.6041 & 37.2082 & -18.6041 & -37.2082 \\ 37.2082 & 74.4162 & -37.2082 & -74.4162 \\ -18.6041 & -37.2082 & -18.6041 & 37.2082 \\ -37.2082 & -74.4162 & 37.2082 & 74.4162 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{U}_{1}} \\ {{U}_{2}} \\ {{U}_{3}} \\ {{U}_{4}} \\ \end{matrix} \\ \end{align} \begin{align} & \frac{{{E}^{\left( 2 \right)}}{{A}^{\left( 2 \right)}}}{{{l}^{\left( 2 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{2.795085}=93.0204\cdot {{10}^{6}}N/m, \\ & cos{{\theta }_{2}}=-0.4472, \\ & \sin {{\theta }_{2}}=0.8944, \\ & \left[ {{\overline{k}}^{\left( 2 \right)}} \right]={{10}^{6}}\begin{matrix} \begin{matrix} {{U}_{5}}\text{ } & \text{ }{{U}_{6}}\text{ } & {{U}_{3}}\text{ } & {{U}_{4}} \\ \end{matrix} \\ \left[ \begin{matrix} 18.6041 & 37.2082 & -18.6041 & 37.2082 \\ -37.2082 & 74.4162 & -37.2082 & -74.4162 \\ -18.6041 & 37.2082 & 18.6041 & -37.2082 \\ 37.2082 & -74.4162 & -37.2082 & 74.4162 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{U}_{5}} \\ {{U}_{6}} \\ {{U}_{3}} \\ {{U}_{4}} \\ \end{matrix} \\ & \frac{{{E}^{\left( 3 \right)}}{{A}^{\left( 3 \right)}}}{{{l}^{\left( 3 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{3.952847}=65.7754\cdot {{10}^{6}}N/m, \\ & \cos {{\theta }_{3}}=0.9487, \\ & \sin {{\theta }_{3}}=0.3162, \\ & \left[ {{\overline{k}}^{\left( 3 \right)}} \right]={{10}^{6}}\begin{matrix} \begin{matrix} {{U}_{3}}\text{ } & \text{ }{{U}_{4}}\text{ } & {{U}_{7}}\text{ } & {{U}_{8}} \\ \end{matrix} \\ \left[ \begin{matrix} 59.1978 & 19.7326 & -59.1978 & -19.7326 \\ -19.7326 & 6.57757 & -19.7326 & -6.57757 \\ -59.1978 & -19.7326 & 59.1978 & -19.7326 \\ -19.7326 & -6.57757 & 19.7326 & 6.57757 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{U}_{3}} \\ {{U}_{4}} \\ {{U}_{7}} \\ {{U}_{8}} \\ \end{matrix} \\ & \frac{{{E}^{\left( 4 \right)}}{{A}^{\left( 4 \right)}}}{{{l}^{\left( 4 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{4.506939}=57.6888\cdot {{10}^{6}}N/m, \\ & \cos {{\theta }_{4}}=0.5547, \\ & \sin {{\theta }_{4}}=0.8321, \\ & \left[ {{\overline{k}}^{\left( 4 \right)}} \right]={{10}^{6}}\begin{matrix} \begin{matrix} {{U}_{5}}\text{ } & \text{ }{{U}_{6}}\text{ } & {{U}_{7}}\text{ } & {{U}_{8}} \\ \end{matrix} \\ \left[ \begin{matrix} 17.7504 & 26.6256 & -17.7504 & -26.6256 \\ 26.6256 & 6.57757 & -26.6256 & -6.57757 \\ -17.7504 & -26.6256 & 17.7504 & -26.6256 \\ -26.6256 & -6.57757 & 26.6256 & 6.57757 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{U}_{5}} \\ {{U}_{6}} \\ {{U}_{7}} \\ {{U}_{8}} \\ \end{matrix} \\ \end{align}




Example 7.5
Find the stresses in the stepped beam shown in next figure when a moment of 1000 N-m is applied at node 2 using a two-element idealization. The beam has a square cross section 50x50 mm between nodes 1 and 2 and 25x25 mm between nodes 2 and 3. Assume the Young s modulus as 2.1 * 10^11 Pa.

\begin{align} & Element1: \\ & I=\frac{1}{12}\left( \frac{50}{1000} \right){{\left( \frac{50}{1000} \right)}^{3}}=0.5208\cdot {{10}^{-6}}{{m}^{4}} \\ & \frac{EI}{{{l}^{3}}}=\frac{2.1\cdot {{10}^{11}}\cdot 0.5208\cdot {{10}^{-6}}}{{{0.25}^{3}}}=0.7\cdot {{10}^{7}} \\ & \left[ {{k}^{\left( 1 \right)}} \right]=0.7\cdot {{10}^{7}}\begin{matrix} \begin{matrix} {{w}_{1}}\text{ } & {{w}_{2}}\text{ } & {{w}_{3}}\text{ } & {{w}_{4}} \\ \end{matrix} \\ \left[ \begin{matrix} 12 & 1.5 & -12 & 1.5 \\ 1.5 & 0.25 & -1.5 & 0.125 \\ -12 & -1.5 & 12 & -1.5 \\ 1.5 & 0.125 & -1.5 & 0.25 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{w}_{1}} \\ {{w}_{2}} \\ {{w}_{3}} \\ {{w}_{4}} \\ \end{matrix}= \\ & 0.7\cdot {{10}^{7}}\begin{matrix} \begin{matrix} {{w}_{3}}\text{ } & {{w}_{4}} \\ \end{matrix} \\ \left[ \begin{matrix} 12 & -1.5 \\ -1.5 & 0.25 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{w}_{3}} \\ {{w}_{4}} \\ \end{matrix} \\ \end{align} \begin{align} & Element2: \\ & I=\frac{1}{12}\left( \frac{25}{1000} \right){{\left( \frac{25}{1000} \right)}^{3}}=0.3255\cdot {{10}^{-7}}{{m}^{4}} \\ & \frac{EI}{{{l}^{3}}}=\frac{2.1\cdot {{10}^{11}}\cdot 0.3255\cdot {{10}^{-7}}}{{{0.4}^{3}}}=10.6805\cdot {{10}^{4}} \\ & \left[ {{k}^{\left( 2 \right)}} \right]=10.6805\cdot {{10}^{4}}\begin{matrix} \begin{matrix} {{w}_{3}}\text{ } & {{w}_{4}}\text{ } & {{w}_{5}}\text{ } & {{w}_{6}} \\ \end{matrix} \\ \left[ \begin{matrix} 12 & 2.4 & -12 & 2.4 \\ 2.4 & 0.64 & -2.4 & 0.32 \\ -12 & -2.4 & 12 & -2.4 \\ 2.4 & 0.32 & -2.4 & 0.64 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{w}_{3}} \\ {{w}_{4}} \\ {{w}_{5}} \\ {{w}_{6}} \\ \end{matrix} \\ & \left[ {{k}^{\left( 2 \right)}} \right]=10.6805\cdot {{10}^{4}}\begin{matrix} \begin{matrix} {{w}_{3}}\text{ } & {{w}_{4}} \\ \end{matrix} \\ \left[ \begin{matrix} 12 & 2.4 \\ 2.4 & 0.64 \\ \end{matrix} \right] \\ {} \\ \end{matrix}\begin{matrix} {{w}_{3}} \\ {{w}_{4}} \\ \end{matrix} \\ \end{align} \begin{align} & \text{Assembled stiffness matrix:} \\ & \left[ K \right]=\left[ \begin{matrix} 8.4\cdot {{10}^{7}}+0.1282\cdot {{10}^{7}} & -1.05\cdot {{10}^{7}}+0.0256\cdot {{10}^{7}} \\ -1.05\cdot {{10}^{7}}+0.0256\cdot {{10}^{7}} & 0.175\cdot {{10}^{7}}+0.0068\cdot {{10}^{7}} \\ \end{matrix} \right] \\ & \text{Equilibrium equations:} \\ & {{10}^{7}}\left[ \begin{matrix} 8.5282 & -1.0244 \\ -1.0244 & 0.1818 \\ \end{matrix} \right]\left\{ \begin{matrix} {{W}_{3}} \\ {{W}_{4}} \\ \end{matrix} \right\}=\left\{ \begin{matrix} 0 \\ {{10}^{3}} \\ \end{matrix} \right\} \\ & {{W}_{3}}=2.0446\cdot {{10}^{-4}}\text{m} \\ & {{W}_{4}}=1.7021\cdot {{10}^{-3}}\text{m} \\ & \text{Stresses in elements:} \\ & M=EI\frac{{{d}^{2}}w(x)}{d{{x}^{2}}} \\ & w(x)=\sum\limits_{i=1}^{4}{{{W}_{i}}{{N}_{i}}\left( x \right)} \\ & {{\sigma }_{\max }}=\frac{Mc}{I}=\frac{Mh}{2I}=\frac{Eh}{2}\frac{{{d}^{2}}w(x)}{d{{x}^{2}}} \\ & {{\sigma }_{\max }}=\frac{Eh}{2}\left[ \frac{{{W}_{1}}}{{{l}^{3}}}\left( 12x-6l \right)+\frac{{{W}_{2}}}{{{l}^{2}}}\left( 6x-4l \right)+\frac{{{W}_{3}}}{{{l}^{3}}}\left( 6l-12x \right)+\frac{{{W}_{4}}}{{{l}^{2}}}\left( 6x-2l \right) \right] \\ & \text{For element 1:} \\ & {{W}_{1}}=0,{{W}_{2}}=0,{{W}_{3}}=2.0446\cdot {{10}^{-4}},{{W}_{4}}=1.7021\cdot {{10}^{-3}}, \\ & l=0.25,h=0.05,E=2.1\cdot {{10}^{11}} \\ & {{\left. {{\sigma }_{\max }} \right|}_{\text{fixed end}}}={{\sigma }_{\max }}\left( x=0 \right)=3.1560\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\ & {{\left. {{\sigma }_{\max }} \right|}_{\text{loaded end}}}={{\sigma }_{\max }}\left( x=0.25 \right)=3.9929\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\ & \text{For element 2:} \\ & {{W}_{1}}=2.0446\cdot {{10}^{-4}},{{W}_{2}}=1.7021\cdot {{10}^{-3}},{{W}_{3}}=0,{{W}_{4}}=0, \\ & l=0.4,h=0.025,E=2.1\cdot {{10}^{11}} \\ & {{\left. {{\sigma }_{\max }} \right|}_{\text{loaded end}}}={{\sigma }_{\max }}\left( x=0 \right)=-6.4807\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\ & {{\left. {{\sigma }_{\max }} \right|}_{\text{fixed end}}}={{\sigma }_{\max }}\left( x=0.4 \right)=4.2467\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\ \end{align}





 

Nema komentara:

Objavi komentar