Example 7.1
Derive the stiffness
matrix of the tapered bar element (which deforms in the axial direction) shown
in next figure. The diameter of the bar decreases from D to d over its length.
As diameter h(x)=D at
x=0 and h(x)=d at x=l, we have
h(x)=D+(d−Dl)xI)Stiffness matrix:V(t)=strain energy of element=12l∫0EA(∂u∂x)2dxu(x,t)=(1−xl)u1(t)+(xl)u2(t)A(x)=πh24=π4[D2+2D(d−Dl)x+(d−Dl)2x2]Thus the strain energy expression becomes:V=πE24l(D2+d2+dD)(u21+u22−2u1u2)V=12→uT[k]→u=12(u1 u2)[k11k12k21k22]{u1u2}This gives the element matrix as:[k]=πE12l(D2+d2+dD)[1−1−11]II)Consistent mass matrix:T(t)=12l∫0ρA(∂u∂t)2dx˙u(x,t)=∂u∂t(x,t)=(1−xl)˙u1(t)+(xl)˙u2(t)T=12l∫0ρπ4{D2+2D(d−Dl)x+(d−Dl)2x2}{˙u21+x(−2l˙u21−2l˙u1˙u2)+x2(˙u21l2+˙u22l2−2˙u1˙u2l2)}dxT=12(˙u1 ˙u2)[m11m12m21m22]{˙u1˙u2}[mc]=πρl4[(D25+d230+Dd10)(D220+d220+Dd15)(D220+d220+Dd15)(D230+d25+Dd10)]
III)Lumped mass matrix:M=πρ4l∫0h2(x)dxM=πρl4(D2+d2Dd)M=πρl4[(D2+d2+Dd)00(D2+d2+Dd)]
Example 7.2
Derive the stiffness
matrix of the bar element in longitudinal vibration whose cross-sectional area
varies as A(x) = A0Exp(-(x/t)) where A0 is the area at the root.
Assume linear
displacement model
u(x)=α1+α2x=U1+(U2−U1l)xεx=∂u∂x=U2−U1lσx=Eεx=E(U2−U1l)V(x)=∭V(e)12σxεxdV=12l∫x=0E(U2−U1l)2A(x)dxV(x)=E2l2(U2−U1)2lA0(1−1e)V(x)=12→UT[K]→U=12(U1 U2)[k]{U1U2}[k]=EA0l(0.6321)[1−1−11]
Example 7.3
The tapered cantilever
beam shown in next figure is used as a spring to carry a load P. Derive the
stiffness matrix of the beam using a one-element idealization. Assume b = 10
cm, t = 2.5 cm, l = 2 m, E = 2.07 * 1011 N/m2, and P = 1000 N.
w(x)=B−(B−bl)xI(x)=112w(x)t3=Bt312−((B−b)t312l)x=a1−a2xa1=Bt312;a2=(B−b)t312l;Deflection of beam:w(x)=4∑i=1Ni(x)WiN1(x)=1−3(xl)2+2(xl)3N2(x)=x−2l(xl)2+l(xl)3N3(x)=3(xl)2−2(xl)3N3(x)=−l(xl)2+l(xl)3w(x)=N1(x)+N2(x)+N3(x)+N4(x)w(x)=1+x−3l(xl)2+2l(xl)3Strain energy of element is given byV=12l∫0EI(x)(d2w(x)dx2)2dxd2N1(x)dx2=−6l2+12l3x,d2N2(x)dx2=−4l+6l2x,d2N3(x)dx2=6l2+12l3x,d2N4(x)dx2=−2l+12l2x,(d2w(x)dx2)2=c21+c22+2c1c2x=(c1+c2x)2c1=−6l2W1−4lW2+6l2W3−2lW4c2=12l3W1+6l2W2−12l3W3+6l2W4
V=12E{W21[36l4(a1l−a2l22)−72l5+144l6(a1l33−a2l44)]+W22[16l2(a1l−a2l22)−24l4(a1l2−2a2l33)+36l4(a1l33−a2l44)]+W23[36l4(a1l−a2l22)−72l5(a1l2−2a2l33)+144l6(a1l33−a2l44)]+W24[4l2(a1l−a2l22)−12l3(a1l2−2a2l33)+36l4(a1l33−a2l44)]+2W1W2[24l3(a1l−a2l22)−42l4(a1l2−2a2l33)+72l5(a1l33−a2l44)]+2W1W3[−36l4(a1l−a2l22)+72l5(a1l2−2a2l33)−144l6(a1l33−a2l44)]+2W1W4[12l3(a1l−a2l22)−30l4(a1l2−2a2l33)+72l5(a1l33−a2l44)]+2W2W3[−24l3(a1l−a2l22)+42l4(a1l2−2a2l33)−72l5(a1l33−a2l44)]+2W2W4[8l2(a1l−a2l22)−18l3(a1l2−2a2l33)+36l4(a1l33−a2l44)]+2W3W4[−12l3(a1l−a2l22)+30l4(a1l2−2a2l33)−72l5(a1l33−a2l44)]}Bywriting:V=12→WT[k]→W→W={W1W2W3W4},thestiffness matrix can be identified.
Defining a1=Bt312,d1=(B−b)t312,a2=d1l,a2l=d1the elements of [k]can be expressed as:k11=E{a1(12l3)−d1(6l3)},k22=E{a1(4l)−d1(1l)},k33=E{a1(12l3)−d1(6l3)},k11=E{a1(4l)−d1(3l)},k12=E{a1(6l2)−d1(2l2)},k13=E{a1(−12l3)+d1(6l3)},k14=E{a1(6l2)−d1(4l2)},k23=E{a1(−6l2)+d1(2l2)},k24=E{a1(2l)−d1(1l)},k34=E{a1(−6l2)+d1(4l2)},b)Stressesinducedinthebeam:B=0.25mb=0.10mt=0.025ml=2mE=2.07⋅1011N/m2P=1000Na1=32552.0833⋅10−11d119531.25⋅10−11Stiffness matrix can be computed as:[k]=W1 W2 W3 W4[7075080860−707506064080860114600−8086047170−70750−8086070750−606406064047170−6064074120]W1W2W3W4Equilibrium equations:[k]→W=→F[70750−60640−6064074120]{W3W4}={01000}The solution of these equations is:W3=0.03871 mW4=0.04516 mstress at root:σmax
Example 7.4
\begin{align}
& {{A}^{\left( i \right)}}=13\cdot {{10}^{-4}}{{m}^{2}},i=1,2,3,4 \\
& E=200\cdot {{10}^{9}}N/{{m}^{2}} \\
& {{l}^{\left( 1 \right)}}=\sqrt{{{1.25}^{2}}+{{2.50}^{2}}}=2.795085m \\
& {{l}^{\left( 2 \right)}}=\sqrt{{{1.25}^{2}}+{{2.50}^{2}}}=2.795085m \\
& {{l}^{\left( 1 \right)}}=\sqrt{{{3.75}^{2}}+{{1.25}^{2}}}=3.952847m \\
& {{l}^{\left( 1 \right)}}=\sqrt{{{2.5}^{2}}+{{3.75}^{2}}}=4.506939m \\
& \left[ {{k}^{\left( i \right)}} \right]=\frac{{{E}^{\left( i \right)}}{{A}^{\left( i \right)}}}{{{l}^{\left( i \right)}}}\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& \left[ {{\overline{k}}^{\left( i \right)}} \right]={{\left[ {{\lambda }^{\left( i \right)}} \right]}^{T}}\left[ {{k}^{\left( i \right)}} \right]\left[ {{\lambda }^{i}} \right] \\
& \left[ {{\lambda }^{i}} \right]=\left[ \begin{matrix}
\cos {{\theta }_{i}} & \sin {{\theta }_{i}} & 0 & 0 \\
0 & 0 & \cos {{\theta }_{i}} & \sin {{\theta }_{i}} \\
\end{matrix} \right] \\
& \left[ {{\overline{k}}^{\left( i \right)}} \right]=\frac{{{E}^{\left( i \right)}}{{A}^{\left( i \right)}}}{{{l}^{\left( i \right)}}}\left[ \begin{matrix}
{{\cos }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\cos }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} \\
\cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\sin }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\sin }^{2}}{{\theta }_{i}} \\
-{{\cos }^{2}}{{\theta }_{i}} & -\cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\cos }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} \\
-\cos {{\theta }_{i}}\sin {{\theta }_{i}} & -{{\sin }^{2}}{{\theta }_{i}} & \cos {{\theta }_{i}}\sin {{\theta }_{i}} & {{\sin }^{2}}{{\theta }_{i}} \\
\end{matrix} \right] \\
& {{\theta }_{1}}={{63.4349}^{\circ }} \\
& {{\theta }_{2}}={{116.5651}^{\circ }} \\
& {{\theta }_{3}}={{18.4350}^{\circ }} \\
& {{\theta }_{4}}={{56.3099}^{\circ }} \\
& \frac{{{E}^{\left( 1 \right)}}{{A}^{\left( 1 \right)}}}{{{l}^{\left( 1 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{2.795085}=93.0204\cdot {{10}^{6}}N/m, \\
& cos{{\theta }_{1}}=0.4472, \\
& \sin {{\theta }_{1}}=0.8944, \\
& \left[ {{\overline{k}}^{\left( 1 \right)}} \right]={{10}^{6}}\begin{matrix}
\begin{matrix}
{{U}_{1}}\text{ } & \text{ }{{U}_{2}}\text{ } & {{U}_{3}}\text{ } & {{U}_{4}} \\
\end{matrix} \\
\left[ \begin{matrix}
18.6041 & 37.2082 & -18.6041 & -37.2082 \\
37.2082 & 74.4162 & -37.2082 & -74.4162 \\
-18.6041 & -37.2082 & -18.6041 & 37.2082 \\
-37.2082 & -74.4162 & 37.2082 & 74.4162 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{U}_{1}} \\
{{U}_{2}} \\
{{U}_{3}} \\
{{U}_{4}} \\
\end{matrix} \\
\end{align}
\begin{align}
& \frac{{{E}^{\left( 2 \right)}}{{A}^{\left( 2 \right)}}}{{{l}^{\left( 2 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{2.795085}=93.0204\cdot {{10}^{6}}N/m, \\
& cos{{\theta }_{2}}=-0.4472, \\
& \sin {{\theta }_{2}}=0.8944, \\
& \left[ {{\overline{k}}^{\left( 2 \right)}} \right]={{10}^{6}}\begin{matrix}
\begin{matrix}
{{U}_{5}}\text{ } & \text{ }{{U}_{6}}\text{ } & {{U}_{3}}\text{ } & {{U}_{4}} \\
\end{matrix} \\
\left[ \begin{matrix}
18.6041 & 37.2082 & -18.6041 & 37.2082 \\
-37.2082 & 74.4162 & -37.2082 & -74.4162 \\
-18.6041 & 37.2082 & 18.6041 & -37.2082 \\
37.2082 & -74.4162 & -37.2082 & 74.4162 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{U}_{5}} \\
{{U}_{6}} \\
{{U}_{3}} \\
{{U}_{4}} \\
\end{matrix} \\
& \frac{{{E}^{\left( 3 \right)}}{{A}^{\left( 3 \right)}}}{{{l}^{\left( 3 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{3.952847}=65.7754\cdot {{10}^{6}}N/m, \\
& \cos {{\theta }_{3}}=0.9487, \\
& \sin {{\theta }_{3}}=0.3162, \\
& \left[ {{\overline{k}}^{\left( 3 \right)}} \right]={{10}^{6}}\begin{matrix}
\begin{matrix}
{{U}_{3}}\text{ } & \text{ }{{U}_{4}}\text{ } & {{U}_{7}}\text{ } & {{U}_{8}} \\
\end{matrix} \\
\left[ \begin{matrix}
59.1978 & 19.7326 & -59.1978 & -19.7326 \\
-19.7326 & 6.57757 & -19.7326 & -6.57757 \\
-59.1978 & -19.7326 & 59.1978 & -19.7326 \\
-19.7326 & -6.57757 & 19.7326 & 6.57757 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{U}_{3}} \\
{{U}_{4}} \\
{{U}_{7}} \\
{{U}_{8}} \\
\end{matrix} \\
& \frac{{{E}^{\left( 4 \right)}}{{A}^{\left( 4 \right)}}}{{{l}^{\left( 4 \right)}}}=\frac{200\cdot {{10}^{9}}\cdot 13\cdot {{10}^{-4}}}{4.506939}=57.6888\cdot {{10}^{6}}N/m, \\
& \cos {{\theta }_{4}}=0.5547, \\
& \sin {{\theta }_{4}}=0.8321, \\
& \left[ {{\overline{k}}^{\left( 4 \right)}} \right]={{10}^{6}}\begin{matrix}
\begin{matrix}
{{U}_{5}}\text{ } & \text{ }{{U}_{6}}\text{ } & {{U}_{7}}\text{ } & {{U}_{8}} \\
\end{matrix} \\
\left[ \begin{matrix}
17.7504 & 26.6256 & -17.7504 & -26.6256 \\
26.6256 & 6.57757 & -26.6256 & -6.57757 \\
-17.7504 & -26.6256 & 17.7504 & -26.6256 \\
-26.6256 & -6.57757 & 26.6256 & 6.57757 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{U}_{5}} \\
{{U}_{6}} \\
{{U}_{7}} \\
{{U}_{8}} \\
\end{matrix} \\
\end{align}
Example 7.5
Find the stresses in
the stepped beam shown in next figure when a moment of 1000 N-m is applied at
node 2 using a two-element idealization. The beam has a square cross section
50x50 mm between nodes 1 and 2 and 25x25 mm between nodes 2 and 3. Assume the Young
s modulus as 2.1 * 10^11 Pa.
\begin{align}
& Element1: \\
& I=\frac{1}{12}\left( \frac{50}{1000} \right){{\left( \frac{50}{1000} \right)}^{3}}=0.5208\cdot {{10}^{-6}}{{m}^{4}} \\
& \frac{EI}{{{l}^{3}}}=\frac{2.1\cdot {{10}^{11}}\cdot 0.5208\cdot {{10}^{-6}}}{{{0.25}^{3}}}=0.7\cdot {{10}^{7}} \\
& \left[ {{k}^{\left( 1 \right)}} \right]=0.7\cdot {{10}^{7}}\begin{matrix}
\begin{matrix}
{{w}_{1}}\text{ } & {{w}_{2}}\text{ } & {{w}_{3}}\text{ } & {{w}_{4}} \\
\end{matrix} \\
\left[ \begin{matrix}
12 & 1.5 & -12 & 1.5 \\
1.5 & 0.25 & -1.5 & 0.125 \\
-12 & -1.5 & 12 & -1.5 \\
1.5 & 0.125 & -1.5 & 0.25 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{w}_{1}} \\
{{w}_{2}} \\
{{w}_{3}} \\
{{w}_{4}} \\
\end{matrix}= \\
& 0.7\cdot {{10}^{7}}\begin{matrix}
\begin{matrix}
{{w}_{3}}\text{ } & {{w}_{4}} \\
\end{matrix} \\
\left[ \begin{matrix}
12 & -1.5 \\
-1.5 & 0.25 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{w}_{3}} \\
{{w}_{4}} \\
\end{matrix} \\
\end{align}
\begin{align}
& Element2: \\
& I=\frac{1}{12}\left( \frac{25}{1000} \right){{\left( \frac{25}{1000} \right)}^{3}}=0.3255\cdot {{10}^{-7}}{{m}^{4}} \\
& \frac{EI}{{{l}^{3}}}=\frac{2.1\cdot {{10}^{11}}\cdot 0.3255\cdot {{10}^{-7}}}{{{0.4}^{3}}}=10.6805\cdot {{10}^{4}} \\
& \left[ {{k}^{\left( 2 \right)}} \right]=10.6805\cdot {{10}^{4}}\begin{matrix}
\begin{matrix}
{{w}_{3}}\text{ } & {{w}_{4}}\text{ } & {{w}_{5}}\text{ } & {{w}_{6}} \\
\end{matrix} \\
\left[ \begin{matrix}
12 & 2.4 & -12 & 2.4 \\
2.4 & 0.64 & -2.4 & 0.32 \\
-12 & -2.4 & 12 & -2.4 \\
2.4 & 0.32 & -2.4 & 0.64 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{w}_{3}} \\
{{w}_{4}} \\
{{w}_{5}} \\
{{w}_{6}} \\
\end{matrix} \\
& \left[ {{k}^{\left( 2 \right)}} \right]=10.6805\cdot {{10}^{4}}\begin{matrix}
\begin{matrix}
{{w}_{3}}\text{ } & {{w}_{4}} \\
\end{matrix} \\
\left[ \begin{matrix}
12 & 2.4 \\
2.4 & 0.64 \\
\end{matrix} \right] \\
{} \\
\end{matrix}\begin{matrix}
{{w}_{3}} \\
{{w}_{4}} \\
\end{matrix} \\
\end{align}
\begin{align}
& \text{Assembled stiffness matrix:} \\
& \left[ K \right]=\left[ \begin{matrix}
8.4\cdot {{10}^{7}}+0.1282\cdot {{10}^{7}} & -1.05\cdot {{10}^{7}}+0.0256\cdot {{10}^{7}} \\
-1.05\cdot {{10}^{7}}+0.0256\cdot {{10}^{7}} & 0.175\cdot {{10}^{7}}+0.0068\cdot {{10}^{7}} \\
\end{matrix} \right] \\
& \text{Equilibrium equations:} \\
& {{10}^{7}}\left[ \begin{matrix}
8.5282 & -1.0244 \\
-1.0244 & 0.1818 \\
\end{matrix} \right]\left\{ \begin{matrix}
{{W}_{3}} \\
{{W}_{4}} \\
\end{matrix} \right\}=\left\{ \begin{matrix}
0 \\
{{10}^{3}} \\
\end{matrix} \right\} \\
& {{W}_{3}}=2.0446\cdot {{10}^{-4}}\text{m} \\
& {{W}_{4}}=1.7021\cdot {{10}^{-3}}\text{m} \\
& \text{Stresses in elements:} \\
& M=EI\frac{{{d}^{2}}w(x)}{d{{x}^{2}}} \\
& w(x)=\sum\limits_{i=1}^{4}{{{W}_{i}}{{N}_{i}}\left( x \right)} \\
& {{\sigma }_{\max }}=\frac{Mc}{I}=\frac{Mh}{2I}=\frac{Eh}{2}\frac{{{d}^{2}}w(x)}{d{{x}^{2}}} \\
& {{\sigma }_{\max }}=\frac{Eh}{2}\left[ \frac{{{W}_{1}}}{{{l}^{3}}}\left( 12x-6l \right)+\frac{{{W}_{2}}}{{{l}^{2}}}\left( 6x-4l \right)+\frac{{{W}_{3}}}{{{l}^{3}}}\left( 6l-12x \right)+\frac{{{W}_{4}}}{{{l}^{2}}}\left( 6x-2l \right) \right] \\
& \text{For element 1:} \\
& {{W}_{1}}=0,{{W}_{2}}=0,{{W}_{3}}=2.0446\cdot {{10}^{-4}},{{W}_{4}}=1.7021\cdot {{10}^{-3}}, \\
& l=0.25,h=0.05,E=2.1\cdot {{10}^{11}} \\
& {{\left. {{\sigma }_{\max }} \right|}_{\text{fixed end}}}={{\sigma }_{\max }}\left( x=0 \right)=3.1560\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\
& {{\left. {{\sigma }_{\max }} \right|}_{\text{loaded end}}}={{\sigma }_{\max }}\left( x=0.25 \right)=3.9929\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\
& \text{For element 2:} \\
& {{W}_{1}}=2.0446\cdot {{10}^{-4}},{{W}_{2}}=1.7021\cdot {{10}^{-3}},{{W}_{3}}=0,{{W}_{4}}=0, \\
& l=0.4,h=0.025,E=2.1\cdot {{10}^{11}} \\
& {{\left. {{\sigma }_{\max }} \right|}_{\text{loaded end}}}={{\sigma }_{\max }}\left( x=0 \right)=-6.4807\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\
& {{\left. {{\sigma }_{\max }} \right|}_{\text{fixed end}}}={{\sigma }_{\max }}\left( x=0.4 \right)=4.2467\cdot {{10}^{7}}\text{N/}{{\text{m}}^{2}} \\
\end{align}
Nema komentara:
Objavi komentar