Loading [MathJax]/jax/output/HTML-CSS/jax.js

Finite Element Method Examples 1-5

Example 7.1
Derive the stiffness matrix of the tapered bar element (which deforms in the axial direction) shown in next figure. The diameter of the bar decreases from D to d over its length.

As diameter h(x)=D at x=0 and h(x)=d at x=l, we have
h(x)=D+(dDl)xI)Stiffness matrix:V(t)=strain energy of element=12l0EA(ux)2dxu(x,t)=(1xl)u1(t)+(xl)u2(t)A(x)=πh24=π4[D2+2D(dDl)x+(dDl)2x2]Thus the strain energy expression becomes:V=πE24l(D2+d2+dD)(u21+u222u1u2)V=12uT[k]u=12(u1 u2)[k11k12k21k22]{u1u2}This gives the element matrix as:[k]=πE12l(D2+d2+dD)[1111]II)Consistent mass matrix:T(t)=12l0ρA(ut)2dx˙u(x,t)=ut(x,t)=(1xl)˙u1(t)+(xl)˙u2(t)T=12l0ρπ4{D2+2D(dDl)x+(dDl)2x2}{˙u21+x(2l˙u212l˙u1˙u2)+x2(˙u21l2+˙u22l22˙u1˙u2l2)}dxT=12(˙u1 ˙u2)[m11m12m21m22]{˙u1˙u2}[mc]=πρl4[(D25+d230+Dd10)(D220+d220+Dd15)(D220+d220+Dd15)(D230+d25+Dd10)] III)Lumped mass matrix:M=πρ4l0h2(x)dxM=πρl4(D2+d2Dd)M=πρl4[(D2+d2+Dd)00(D2+d2+Dd)]



Example 7.2
Derive the stiffness matrix of the bar element in longitudinal vibration whose cross-sectional area varies as A(x) = A0Exp(-(x/t)) where A0 is the area at the root.

Assume linear displacement model
u(x)=α1+α2x=U1+(U2U1l)xεx=ux=U2U1lσx=Eεx=E(U2U1l)V(x)=V(e)12σxεxdV=12lx=0E(U2U1l)2A(x)dxV(x)=E2l2(U2U1)2lA0(11e)V(x)=12UT[K]U=12(U1 U2)[k]{U1U2}[k]=EA0l(0.6321)[1111]



Example 7.3
The tapered cantilever beam shown in next figure is used as a spring to carry a load P. Derive the stiffness matrix of the beam using a one-element idealization. Assume b = 10 cm, t = 2.5 cm, l = 2 m, E = 2.07 * 1011 N/m2, and P = 1000 N.

w(x)=B(Bbl)xI(x)=112w(x)t3=Bt312((Bb)t312l)x=a1a2xa1=Bt312;a2=(Bb)t312l;Deflection of beam:w(x)=4i=1Ni(x)WiN1(x)=13(xl)2+2(xl)3N2(x)=x2l(xl)2+l(xl)3N3(x)=3(xl)22(xl)3N3(x)=l(xl)2+l(xl)3w(x)=N1(x)+N2(x)+N3(x)+N4(x)w(x)=1+x3l(xl)2+2l(xl)3Strain energy of element is given byV=12l0EI(x)(d2w(x)dx2)2dxd2N1(x)dx2=6l2+12l3x,d2N2(x)dx2=4l+6l2x,d2N3(x)dx2=6l2+12l3x,d2N4(x)dx2=2l+12l2x,(d2w(x)dx2)2=c21+c22+2c1c2x=(c1+c2x)2c1=6l2W14lW2+6l2W32lW4c2=12l3W1+6l2W212l3W3+6l2W4 V=12E{W21[36l4(a1la2l22)72l5+144l6(a1l33a2l44)]+W22[16l2(a1la2l22)24l4(a1l22a2l33)+36l4(a1l33a2l44)]+W23[36l4(a1la2l22)72l5(a1l22a2l33)+144l6(a1l33a2l44)]+W24[4l2(a1la2l22)12l3(a1l22a2l33)+36l4(a1l33a2l44)]+2W1W2[24l3(a1la2l22)42l4(a1l22a2l33)+72l5(a1l33a2l44)]+2W1W3[36l4(a1la2l22)+72l5(a1l22a2l33)144l6(a1l33a2l44)]+2W1W4[12l3(a1la2l22)30l4(a1l22a2l33)+72l5(a1l33a2l44)]+2W2W3[24l3(a1la2l22)+42l4(a1l22a2l33)72l5(a1l33a2l44)]+2W2W4[8l2(a1la2l22)18l3(a1l22a2l33)+36l4(a1l33a2l44)]+2W3W4[12l3(a1la2l22)+30l4(a1l22a2l33)72l5(a1l33a2l44)]}Bywriting:V=12WT[k]WW={W1W2W3W4},thestiffness matrix can be identified. Defining a1=Bt312,d1=(Bb)t312,a2=d1l,a2l=d1the elements of [k]can be expressed as:k11=E{a1(12l3)d1(6l3)},k22=E{a1(4l)d1(1l)},k33=E{a1(12l3)d1(6l3)},k11=E{a1(4l)d1(3l)},k12=E{a1(6l2)d1(2l2)},k13=E{a1(12l3)+d1(6l3)},k14=E{a1(6l2)d1(4l2)},k23=E{a1(6l2)+d1(2l2)},k24=E{a1(2l)d1(1l)},k34=E{a1(6l2)+d1(4l2)},b)Stressesinducedinthebeam:B=0.25mb=0.10mt=0.025ml=2mE=2.071011N/m2P=1000Na1=32552.08331011d119531.251011Stiffness matrix can be computed as:[k]=W1 W2 W3 W4[707508086070750606408086011460080860471707075080860707506064060640471706064074120]W1W2W3W4Equilibrium equations:[k]W=F[70750606406064074120]{W3W4}={01000}The solution of these equations is:W3=0.03871 mW4=0.04516 mstress at root:σmax|x=0=MymaxI|x=0=EI(x)d2w(x)dx2ymaxI(x)|x=0=3.3392107N/m2



Example 7.4
For a dynamical system shown in next figure derive the local stiffness matrices of elements. 
A(i)=13104m2,i=1,2,3,4E=200109N/m2l(1)=1.252+2.502=2.795085ml(2)=1.252+2.502=2.795085ml(1)=3.752+1.252=3.952847ml(1)=2.52+3.752=4.506939m[k(i)]=E(i)A(i)l(i)[1111][¯k(i)]=[λ(i)]T[k(i)][λi][λi]=[cosθisinθi0000cosθisinθi][¯k(i)]=E(i)A(i)l(i)[cos2θicosθisinθicos2θicosθisinθicosθisinθisin2θicosθisinθisin2θicos2θicosθisinθicos2θicosθisinθicosθisinθisin2θicosθisinθisin2θi]θ1=63.4349θ2=116.5651θ3=18.4350θ4=56.3099E(1)A(1)l(1)=200109131042.795085=93.0204106N/m,cosθ1=0.4472,sinθ1=0.8944,[¯k(1)]=106U1  U2 U3 U4[18.604137.208218.604137.208237.208274.416237.208274.416218.604137.208218.604137.208237.208274.416237.208274.4162]U1U2U3U4 E(2)A(2)l(2)=200109131042.795085=93.0204106N/m,cosθ2=0.4472,sinθ2=0.8944,[¯k(2)]=106U5  U6 U3 U4[18.604137.208218.604137.208237.208274.416237.208274.416218.604137.208218.604137.208237.208274.416237.208274.4162]U5U6U3U4E(3)A(3)l(3)=200109131043.952847=65.7754106N/m,cosθ3=0.9487,sinθ3=0.3162,[¯k(3)]=106U3  U4 U7 U8[59.197819.732659.197819.732619.73266.5775719.73266.5775759.197819.732659.197819.732619.73266.5775719.73266.57757]U3U4U7U8E(4)A(4)l(4)=200109131044.506939=57.6888106N/m,cosθ4=0.5547,sinθ4=0.8321,[¯k(4)]=106U5  U6 U7 U8[17.750426.625617.750426.625626.62566.5775726.62566.5775717.750426.625617.750426.625626.62566.5775726.62566.57757]U5U6U7U8




Example 7.5
Find the stresses in the stepped beam shown in next figure when a moment of 1000 N-m is applied at node 2 using a two-element idealization. The beam has a square cross section 50x50 mm between nodes 1 and 2 and 25x25 mm between nodes 2 and 3. Assume the Young s modulus as 2.1 * 10^11 Pa.

Element1:I=112(501000)(501000)3=0.5208106m4EIl3=2.110110.52081060.253=0.7107[k(1)]=0.7107w1 w2 w3 w4[121.5121.51.50.251.50.125121.5121.51.50.1251.50.25]w1w2w3w4=0.7107w3 w4[121.51.50.25]w3w4 Element2:I=112(251000)(251000)3=0.3255107m4EIl3=2.110110.32551070.43=10.6805104[k(2)]=10.6805104w3 w4 w5 w6[122.4122.42.40.642.40.32122.4122.42.40.322.40.64]w3w4w5w6[k(2)]=10.6805104w3 w4[122.42.40.64]w3w4 Assembled stiffness matrix:[K]=[8.4107+0.12821071.05107+0.02561071.05107+0.02561070.175107+0.0068107]Equilibrium equations:107[8.52821.02441.02440.1818]{W3W4}={0103}W3=2.0446104mW4=1.7021103mStresses in elements:M=EId2w(x)dx2w(x)=4i=1WiNi(x)σmax=McI=Mh2I=Eh2d2w(x)dx2σmax=Eh2[W1l3(12x6l)+W2l2(6x4l)+W3l3(6l12x)+W4l2(6x2l)]For element 1:W1=0,W2=0,W3=2.0446104,W4=1.7021103,l=0.25,h=0.05,E=2.11011σmax|fixed end=σmax(x=0)=3.1560107N/m2σmax|loaded end=σmax(x=0.25)=3.9929107N/m2For element 2:W1=2.0446104,W2=1.7021103,W3=0,W4=0,l=0.4,h=0.025,E=2.11011σmax|loaded end=σmax(x=0)=6.4807107N/m2σmax|fixed end=σmax(x=0.4)=4.2467107N/m2





 

Nema komentara:

Objavi komentar