Example 1 - Find the natural frequencies of the system shown in
the following figure with:
m1=m,m2=2m,k1=k,k2=2k.
Determine the response of the system when k = 1000
N/m, m = 20 kg and when initial values
of displacements of the masses m_1 and m_2 are 1 and -1, respectively.
Solution: First step is to derive the differential
equation which describe the motion of the system.
m1¨x1+(k1+k2)x1−k2x2=0,m2¨x2+k2x2−k2x1=0
Solution of previous equation can be expressed in the
following form:
xi(t)=Xicos(ωt+ϕ), i =1,2x1(t)=X1cos(ωt+ϕ)x2(t)=X2cos(ωt+ϕ)
Inserting the solutions in previous differential
equation we get:
−m1ω2X1cos(ωt+ϕ)+(k1+k2)X1cos(ωt+ϕ)−k2X2cos(ωt+ϕ)=0/:cos(ωt+ϕ),−m2ω2X2cos(ωt+ϕ)+k2X2cos(ωt+ϕ)−k2X1cos(ωt+ϕ)=0/:cos(ωt+ϕ){−m1ω2+(k1+k2)}X1−k2X2=0,−k2X1+{−m2ω2+k2}X2=0det[−m1ω2+(k1+k2)−k2−k2−m2ω2+k2]=0m1m2ω4−k2m1ω2−(k1+k2)m2ω2+k2(k1+k2)−k22=0m1m2ω4−k2m1ω2−(k1+k2)m2ω2+k2(k1+k2)−k22=0/:m1m2ω4−(k1+k2m1+k2m2)ω2+k1k2m1m2=0
Now it’s time to solve previously derived quadratic
equation:
ω4−(k1+k2m1+k2m2)ω2+k1k2m1m2=0ω21,2=(k1+k2m1+k2m2)±√(k1+k2m1+k2m2)2−4k1k2m1m22=ω21,2=(k1+k22m1+k22m2)±12√(k1+k2m1+k2m2)2−4k1k2m1m2ω21,2=(k1+k22m1+k22m2)±√14(k1+k2m1+k2m2)2−k1k2m1m2
The values of X1 and X2 remain to be determined.
These values depend on the natural frequencies ω1 and ω2. We shall denote these
values of X1 and X2 corresponding to ω1 as X1(1) and X2(1) and those
corresponding to ω2 as X1(2) and X2(2). All we need to do now is to define the
ratios
r1=X(1)2X(1)1=−m1ω21+k1+k2k2=k2−m2ω21+k2r2=X(2)2X(2)1=−m1ω22+k1+k2k2=k2−m2ω22+k2
General solution of differential equation can be
written in the following form:
x1(t)=X(1)1cos(ω1t+ϕ1)+X(2)1cos(ω2t+ϕ2)x2(t)=r1X(1)2cos(ω1t+ϕ1)+r2X(2)1cos(ω2t+ϕ2)
The next step is to find variables inside the general
solution according to these formulas:
X(1)1=1r2−r1[{r2x1(0)−x2(0)}2+{−r2˙x1(0)−˙x2(0)}2ω21]1/2X(2)1=1r2−r1[{−r1x1(0)−x2(0)}2+{r1˙x1(0)−˙x2(0)}2ω22]1/2ϕ1=tan−1{−r2˙x1(0)+˙x2(0)ω1[r2x1(0)−x2(0)]}ϕ2=tan−1{r1˙x1(0)+˙x2(0)ω2[r1x1(0)−x2(0)]}
For m1 = m, m2 = m,
k1 = k and k2 = 2k we get:
ω21,2=(k1+k22m1+k22m2)±√14(k1+k2m1+k2m2)2−k1k2m1m2ω21,2=(k+2k2m+2k4m)±√14(k+2km+2k2m)2−2k22m2ω21,2=(6k+2k4m)±√14(6k+2k2m)2−2k22m2ω21,2=(2km)±√14(4km)2−2k22m2=(2km)±√4k2m2−2k22m2=(2km)±√8k2−2k22m2ω21,2=(2km)±√8k2−2k22m2=(2km)±√3k2m2ω21=(2−√3)km;ω22=(2+√3)km
For k = 1000 N/m m = 20kg:
ω21=(2−√3)km=(2−√3)100020=(2−√3)50=13.397ω1=3.6603 rad/secω22=(2+√3)km=(2+√3)50=186.602ω2=13.6603 rad/sec
r1=X(1)2X(1)1=k2−m2ω21+k2=2k−2mω21+2k=k−mω21+k=1.36604r2=X(2)2X(2)1=k2−m2ω22+k2=k−mω22+k=−0.36602
With:
x1(0)=1,˙x1(0)=0,x2(0)=−1,˙x2(0)=0,X(1)1=1r2−r1[{r2x1(0)−x2(0)}2+{−r2˙x1(0)−˙x2(0)}2ω21]1/2=−0.36602X(2)1=1r2−r1[{−r1x1(0)−x2(0)}2+{r1˙x1(0)−˙x2(0)}2ω22]1/2=−1.36603ϕ1=tan−1{−r2˙x1(0)+˙x2(0)ω1[r2x1(0)−x2(0)]}=0ϕ2=tan−1{r1˙x1(0)+˙x2(0)ω2[r1x1(0)−x2(0)]}=0
x1(t)=−0.36602cos3.6603t−1.36603cos13.6603tx2(t)=−0.5cos3.6603t+0.5cos13.6603t
Nema komentara:
Objavi komentar