Loading [MathJax]/jax/output/HTML-CSS/jax.js

Examples of Two Degrees of Freedom Systems 1-5

Example 1 - Find the natural frequencies of the system shown in the following figure with: 


m1=m,m2=2m,k1=k,k2=2k.

Determine the response of the system when k = 1000 N/m, m = 20 kg  and when initial values of displacements of the masses m_1 and m_2 are 1 and -1, respectively.

 Solution: First step is to derive the differential equation which describe the motion of the system. 

m1¨x1+(k1+k2)x1k2x2=0,m2¨x2+k2x2k2x1=0

Solution of previous equation can be expressed in the following form:


xi(t)=Xicos(ωt+ϕ), i =1,2x1(t)=X1cos(ωt+ϕ)x2(t)=X2cos(ωt+ϕ)

Inserting the solutions in previous differential equation we get:


m1ω2X1cos(ωt+ϕ)+(k1+k2)X1cos(ωt+ϕ)k2X2cos(ωt+ϕ)=0/:cos(ωt+ϕ),m2ω2X2cos(ωt+ϕ)+k2X2cos(ωt+ϕ)k2X1cos(ωt+ϕ)=0/:cos(ωt+ϕ){m1ω2+(k1+k2)}X1k2X2=0,k2X1+{m2ω2+k2}X2=0det[m1ω2+(k1+k2)k2k2m2ω2+k2]=0m1m2ω4k2m1ω2(k1+k2)m2ω2+k2(k1+k2)k22=0m1m2ω4k2m1ω2(k1+k2)m2ω2+k2(k1+k2)k22=0/:m1m2ω4(k1+k2m1+k2m2)ω2+k1k2m1m2=0

Now it’s time to solve previously derived quadratic equation:


ω4(k1+k2m1+k2m2)ω2+k1k2m1m2=0ω21,2=(k1+k2m1+k2m2)±(k1+k2m1+k2m2)24k1k2m1m22=ω21,2=(k1+k22m1+k22m2)±12(k1+k2m1+k2m2)24k1k2m1m2ω21,2=(k1+k22m1+k22m2)±14(k1+k2m1+k2m2)2k1k2m1m2

The values of X­1 and X2 remain to be determined. These values depend on the natural frequencies ω1 and ω2. We shall denote these values of X1 and X2 corresponding to ω1 as X1(1) and X2(1) and those corresponding to ω2 as X1(2) and X2(2). All we need to do now is to define the ratios

r1=X(1)2X(1)1=m1ω21+k1+k2k2=k2m2ω21+k2r2=X(2)2X(2)1=m1ω22+k1+k2k2=k2m2ω22+k2

General solution of differential equation can be written in the following form:


x1(t)=X(1)1cos(ω1t+ϕ1)+X(2)1cos(ω2t+ϕ2)x2(t)=r1X(1)2cos(ω1t+ϕ1)+r2X(2)1cos(ω2t+ϕ2)


The next step is to find variables inside the general solution according to these formulas:

X(1)1=1r2r1[{r2x1(0)x2(0)}2+{r2˙x1(0)˙x2(0)}2ω21]1/2X(2)1=1r2r1[{r1x1(0)x2(0)}2+{r1˙x1(0)˙x2(0)}2ω22]1/2ϕ1=tan1{r2˙x1(0)+˙x2(0)ω1[r2x1(0)x2(0)]}ϕ2=tan1{r1˙x1(0)+˙x2(0)ω2[r1x1(0)x2(0)]}

For m1 = m, m2 = m,  k1 = k and k2 = 2k we get: 


ω21,2=(k1+k22m1+k22m2)±14(k1+k2m1+k2m2)2k1k2m1m2ω21,2=(k+2k2m+2k4m)±14(k+2km+2k2m)22k22m2ω21,2=(6k+2k4m)±14(6k+2k2m)22k22m2ω21,2=(2km)±14(4km)22k22m2=(2km)±4k2m22k22m2=(2km)±8k22k22m2ω21,2=(2km)±8k22k22m2=(2km)±3k2m2ω21=(23)km;ω22=(2+3)km

For k = 1000 N/m m = 20kg:


ω21=(23)km=(23)100020=(23)50=13.397ω1=3.6603 rad/secω22=(2+3)km=(2+3)50=186.602ω2=13.6603 rad/sec

 r1=X(1)2X(1)1=k2m2ω21+k2=2k2mω21+2k=kmω21+k=1.36604r2=X(2)2X(2)1=k2m2ω22+k2=kmω22+k=0.36602

With: 

x1(0)=1,˙x1(0)=0,x2(0)=1,˙x2(0)=0,X(1)1=1r2r1[{r2x1(0)x2(0)}2+{r2˙x1(0)˙x2(0)}2ω21]1/2=0.36602X(2)1=1r2r1[{r1x1(0)x2(0)}2+{r1˙x1(0)˙x2(0)}2ω22]1/2=1.36603ϕ1=tan1{r2˙x1(0)+˙x2(0)ω1[r2x1(0)x2(0)]}=0ϕ2=tan1{r1˙x1(0)+˙x2(0)ω2[r1x1(0)x2(0)]}=0
x1(t)=0.36602cos3.6603t1.36603cos13.6603tx2(t)=0.5cos3.6603t+0.5cos13.6603t

Nema komentara:

Objavi komentar