Loading [MathJax]/jax/output/HTML-CSS/jax.js

Damped Forced Vibration Exercises


Example 1.1
The spring system is connected to a crosshead that oscillates vertically when the wheel rotates with a constant angular velocity of ω. If the amplitude of the steady-state vibration is observed to be 400 mm, and the springs each have a stiffness k=2500 N/m, determine the two possible values of ω at which the wheel must rotate. The block has a mass of 50 kg.
Y=0.4mk=2500N/mm=50kg_keq=2k=2(2500)=5000ωn=keqm=500050=10 rad/s(YP)max=δ01(ωωn)2±0.4=0.21(ω10)2(ω10)2=1±0.5ω12100=1.512.2 rad/sω22100=0.57.07 rad/s


Example 1.2
If the 30 kg block is subjected to a periodic force of 300 sin 5*t, k=1500 N/m, and c=300 Ns/m
Determine the equation that describes the steady-state vibration as a function of time.
keq=2k=2(1500)=3000 N/mωeq=keqm=300030=10 rad/scc=2mωn=23010=600 Ns/mccc=300600=0.5Y=F0keq[1(ωωn)2]2+[(2ccc)(ωωn)]2Y=3003000[1(510)2]2+[20.5510]2Y=0.1109 myP=0.111sin(5t0.588) m

Example 1.3
Determine the differential equation of motion for the damped vibratory system shown. What type of motion occurs? 
Fy=may;mgk(y+yst)2c˙y=m¨y,m¨y+ky+2c˙y+kystmg=0,kystmg=0,m¨y+2c˙y+ky=025¨y+400˙y+100y=0¨y+16˙y+4y=0ωn=km=41=2 rad/scc=2mωn=2252=100 Ns/m
Since damping of the system is larger than the critical damping the system will not vibrate. In conclusion the system is overdamped.

Nema komentara:

Objavi komentar