Example 1.1
The spring system is
connected to a crosshead that oscillates vertically when the wheel rotates with
a constant angular velocity of ω. If the amplitude of the steady-state
vibration is observed to be 400 mm, and the springs each have a stiffness k=2500
N/m, determine the two possible values of ω at which the wheel must rotate. The
block has a mass of 50 kg.
Y=0.4mk=2500N/mm=50kg_keq=2k=2(2500)=5000ωn=√keqm=√500050=10 rad/s(YP)max=δ01−(ωωn)2±0.4=0.21−(ω10)2(ω10)2=1±0.5ω12100=1.5⇒12.2 rad/sω22100=0.5⇒7.07 rad/s
Example 1.2
If
the 30 kg block is subjected to a periodic force of 300 sin 5*t, k=1500 N/m,
and c=300 Ns/m
keq=2k=2(1500)=3000 N/mωeq=√keqm=√300030=10 rad/scc=2mωn=2⋅30⋅10=600 Ns/mccc=300600=0.5Y=F0keq√[1−(ωωn)2]2+[(2ccc)(ωωn)]2Y=3003000√[1−(510)2]2+[2⋅0.5⋅510]2Y=0.1109 myP=0.111sin(5t−0.588) m
Example 1.3
Determine the
differential equation of motion for the damped vibratory system shown. What
type of motion occurs?
∑Fy=may;mg−k(y+yst)−2c˙y=m¨y,m¨y+ky+2c˙y+kyst−mg=0,kyst−mg=0,m¨y+2c˙y+ky=025¨y+400˙y+100y=0¨y+16˙y+4y=0ωn=√km=√41=2 rad/scc=2mωn=2⋅25⋅2=100 Ns/m
Since damping of the
system is larger than the critical damping the system will not vibrate. In
conclusion the system is overdamped.
Nema komentara:
Objavi komentar