Coulomb damping



Coulomb damping is the damping that occurs due to dry friction when two surfaces slide against one another. Coulomb damping can be there result of a mass sliding on a dry surface, axle friction in a journal bearing, belt friction etc. The case of a mass sliding on a dry surface is analyzed here, but the qualitative results apply to all form of Coulomb damping.
Imagine the simple system that consists of block of mass m and the spring with stiffness k. The spring is a connection between the block and the wall. The block of mass m slides on the dry surface and a friction force that resists the motion develops between the mass and the surface.
 
Figure 1 – a) Mass slides on a surface with a kinetic coefficient of friction µ; b) free-body diagrams at an arbitrary instant of time when x’>0; c) Free body diagrams at an arbitrary instant of time with x’<0 .="" span="">

The Coulomb’s law states that the friction force is proportional to the normal force developed between the mass and the surface. The constant of proportionality is called the kinetic coefficient of friction. Since the friction force always resists the motion, its direction depends on the sign and the velocity.

So by applying Newton’s law to the Free Body Diagram Method we derived the following equation which describes the motion of the system.
$$\begin{align} & m\ddot{x}+kx=-\mu mg\text{ \dot{x}}>~\text{0} \\ & m\ddot{x}+kx=\mu mg\text{ \dot{x}0} \\ \end{align}$$
 
Previous equations are generalized by using a single equation.
$$m\ddot{x}+kx=-\mu mg\frac{\left| {\dot{x}} \right|}{x}$$
The right hand side of previous equation is a nonlinear function of the generalized coordinate. Thus the free vibrations of a one-degree-of-freedom system with Coulomb damping are governed by a nonlinear differential equation. However, an analytical solution exists and is obtained by solving previous equation.
Without loss of generality, assume that free vibrational of the system shown in Fig 1. are initiated by displacing the mass a distance δ to the right, from equilibrium, and releasing it from the rest. The spring force draws back the mass toward the equilibrium position; thus the velocity is initially negative. Equation
$$m\ddot{x}+kx=\mu mg\text{ \dot{x}0}$$
,
applies over the first half-cycle of motion, until the velocity again becomes zero. Solution of the previous equation subjected to
$$\begin{align} & x\left( 0 \right)=\delta , \\ & \dot{x}\left( 0 \right)=0 \\ \end{align}$$
gives: 
$$x(t)=\left( \delta -\frac{\mu mg}{k} \right)\cos {{\omega }_{n}}t+\frac{\mu mg}{k}$$

Free vibrations of one-degree-of-freedom systems with viscous damping



Now we’re are going to analyze the system which has block of mass m, spring with stiffness k and the damper (dashpot) with coefficient of viscous damping c. The system is shown in next figure.
 
Figure 1 – a) System with block of mass m attached to the spring with stiffness k and the damper with coefficient of viscous damping c b) Free body diagram showing external and effective forces which act on the block of mass m.

As you can see from the previous figure we have derived the FBD diagram and showed which forces act on the body. The external forces that act on the body are the spring force, damping force and the gravity. The effective force is the inertial force which acts in opposite direction to the spring force and the damping force. Now it’s time, using the second Newton’s law to derive the differential equation of the analyzed system.
$$\begin{align} & +\downarrow \sum{{{F}_{y}}}=m\ddot{x}, \\ & -k\left( x+\Delta \right)-c\dot{x}+mg=m\ddot{x}, \\ & mg=k\Delta , \\ & -kx-k\Delta -c\dot{x}+k\Delta =m\ddot{x}, \\ & m\ddot{x}+kx+c\dot{x}=0 \\ \end{align}$$
                                                        


The general form of the differential equation for the displacement of a particle in a one-degree-of freedom linear system where viscous damping is present is
$$m\ddot{x}+c\dot{x}+kx=0$$
                                                                

Let’s assume the solution of the previous system in the following form:
$$x(t)=C{{e}^{ht}}$$
                                                                    

Now we need to derive the first and second derivative of the assumed solution:
$$\begin{align} & \dot{x}(t)=Ch{{e}^{ht}}, \\ & \ddot{x}(t)=C{{h}^{2}}{{e}^{ht}}. \\ \end{align}$$
                                                                  

                                        
Insert those derivatives into the differential equation:
$$\begin{align} & mC{{h}^{2}}{{e}^{ht}}+cCh{{e}^{ht}}+kC{{e}^{ht}}=0, \\ & m{{h}^{2}}+ch+k=0 \\ \end{align}$$
                                                     

As you can see we have transformed the differential equation into quadratic equation. So now we need to find the solution of the quadratic equation. The solution can be written in the following form:
$${{h}_{1,2}}=\frac{-c\pm \sqrt{{{c}^{2}}-4mk}}{2m}=-\frac{c}{2m}\pm \sqrt{{{\left( \frac{c}{2m} \right)}^{2}}-\frac{k}{m}}$$
                                         

If we write the purposed solution as:
$$\begin{align} & {{x}_{1}}(t)={{C}_{1}}{{e}^{{{h}_{1}}t}},{{x}_{2}}\left( t \right)={{C}_{2}}{{e}^{{{h}_{2}}t}}, \\ & x(t)={{x}_{1}}(t)+{{x}_{2}}(t), \\ & x(t)={{C}_{1}}{{e}^{{{h}_{1}}t}}+{{C}_{2}}{{e}^{{{h}_{2}}t}}. \\ \end{align}$$
                                                       
Then we get:
$$x(t)={{C}_{1}}{{e}^{\left\{ -\frac{c}{2m}+\sqrt{{{\left( \frac{c}{2m} \right)}^{2}}-\frac{k}{m}} \right\}t}}+{{C}_{2}}{{e}^{\left\{ -\frac{c}{2m}-\sqrt{{{\left( \frac{c}{2m} \right)}^{2}}-\frac{k}{m}} \right\}t}}$$
                                          

The next step is to derive formulas for critical damping and the damping ration. Let’s look at the discriminant of quadratic equation.
$$\begin{align} & {{\left( \frac{{{c}_{c}}}{2m} \right)}^{2}}-\frac{k}{m}=0, \\ & \frac{{{c}_{c}}}{2m}=\sqrt{\frac{k}{m}}, \\ & {{c}_{c}}=2m\sqrt{\frac{k}{m}}=2\sqrt{\frac{k{{m}^{2}}}{m}}=2\sqrt{km}, \\ & {{c}_{c}}=2m{{\omega }_{n}} \\ \end{align}$$
                                                    

For every damped system the damping ration is defined as the ration of the damping constant to the critical damping constant:
$$\varsigma =\frac{c}{{{c}_{c}}}$$
                                                                        

Now we need to derive the damping ratio and the first variable of determinant.
$$\frac{{{c}_{c}}}{2m}=\frac{c}{{{c}_{c}}}\frac{{{c}_{c}}}{2m}=\varsigma {{\omega }_{n}}$$
                                                              

When we insert previously defined expressions into the solution of the quadratic equation we will get:
$$\begin{align} & {{h}_{1,2}}=-\frac{c}{2m}\pm \sqrt{{{\left( \frac{c}{2m} \right)}^{2}}-\frac{k}{m}} \\ & {{h}_{1,2}}=-\zeta {{\omega }_{n}}\pm \sqrt{{{\left( \zeta {{\omega }_{n}} \right)}^{2}}-{{\omega }_{n}}^{2}} \\ & {{h}_{1,2}}=\left( -\zeta \pm \sqrt{{{\zeta }^{2}}-1} \right){{\omega }_{n}} \\ \end{align}$$
                                                       

Inserting the constant h into the assumed solution of the differential equation we will get:
$$x(t)={{C}_{1}}{{e}^{\left( -\zeta +\sqrt{{{\zeta }^{2}}-1} \right){{\omega }_{n}}t}}+{{C}_{2}}{{e}^{\left( -\zeta -\sqrt{{{\zeta }^{2}}-1} \right){{\omega }_{n}}t}}$$
                                                

The nature of the roots h1 and h2 and the behavior of previous solution depends on the magnitude of damping. So now we need to examine those cases.
FIRST CASE – The system is underdamped and has these conditions:
$$\varsigma <1,c<{{c}_{c}}\text{ or }\frac{c}{2m}<\sqrt{k/m}$$                                                        
For these conditions the expression under the square root is negative and we can write the solutions h1 and h2 as:
$$\begin{align} & {{h}_{1}}=\left( -\zeta +i\sqrt{1-{{\zeta }^{2}}} \right){{\omega }_{n}}, \\ & {{h}_{2}}=\left( -\zeta -i\sqrt{1-{{\zeta }^{2}}} \right){{\omega }_{n}} \\ \end{align}$$
                                                          

And the assumed solution can be written in the following form:
$$\begin{align} & x(t)={{C}_{1}}{{e}^{\left( -\zeta +i\sqrt{1-{{\zeta }^{2}}} \right){{\omega }_{n}}t}}+{{C}_{2}}{{e}^{\left( -\zeta -i\sqrt{1-{{\zeta }^{2}}} \right){{\omega }_{n}}t}} \\ & \text{ }={{e}^{-\zeta {{\omega }_{n}}t}}\left\{ {{C}_{1}}{{e}^{i\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t}}+{{C}_{2}}{{e}^{-i\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t}} \right\}, \\ & \text{ }={{e}^{-\zeta {{\omega }_{n}}t}}\left\{ \left( {{C}_{1}}+{{C}_{2}} \right)\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+i\left( {{C}_{1}}-{{C}_{2}} \right)\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\}, \\ & \text{ }={{e}^{-\zeta {{\omega }_{n}}t}}\left\{ {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+i{{{{C}'}}_{2}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\}, \\ & \text{ }={{X}_{0}}{{e}^{-\zeta {{\omega }_{n}}t}}\sin \left( \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+{{\phi }_{0}} \right), \\ & \text{ }=X{{e}^{-\zeta {{\omega }_{n}}t}}\cos \left( \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t-\phi \right). \\ \end{align}$$
.
Now we need to determine the arbitrary constants form the initial conditions.
For the initial conditions:
$$\begin{align} & x(0)={{x}_{0}}, \\ & \dot{x}(0)={{{\dot{x}}}_{0}}, \\ \end{align}$$
                                                                     

we have:
$$\begin{align} & x(t)={{e}^{-\zeta {{\omega }_{n}}t}}\left\{ {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+i{{{{C}'}}_{2}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\}, \\ & \dot{x}(t)=-\zeta {{\omega }_{n}}{{e}^{-\zeta {{\omega }_{n}}t}}\left\{ {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+i{{{{C}'}}_{2}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\}+ \\ & {{e}^{-\zeta {{\omega }_{n}}t}}\left\{ -{{{{C}'}}_{1}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+i{{{{C}'}}_{2}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\}, \\ & x(0)={{e}^{-\zeta {{\omega }_{n}}0}}\left\{ {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0+i{{{{C}'}}_{2}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0 \right\}={{x}_{0}}, \\ & {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0={{x}_{0}}, \\ & {{{{C}'}}_{1}}={{x}_{0}}, \\ & \dot{x}(0)=-\zeta {{\omega }_{n}}{{e}^{-\zeta {{\omega }_{n}}0}}\left\{ {{{{C}'}}_{1}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0+i{{{{C}'}}_{2}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0 \right\}+ \\ & {{e}^{-\zeta {{\omega }_{n}}0}}\left\{ -{{{{C}'}}_{1}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0+i{{{{C}'}}_{2}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}0 \right\}={{{\dot{x}}}_{0}} \\ & -\zeta {{\omega }_{n}}{{{{C}'}}_{1}}+i{{{{C}'}}_{2}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}={{{\dot{x}}}_{0}}, \\ & -\zeta {{\omega }_{n}}{{x}_{0}}+i{{{{C}'}}_{2}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}={{{\dot{x}}}_{0}}, \\ & {{{{C}'}}_{2}}\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}={{{\dot{x}}}_{0}}+\zeta {{\omega }_{n}}{{x}_{0}} \\ & {{{{C}'}}_{2}}=\frac{{{{\dot{x}}}_{0}}+\zeta {{\omega }_{n}}{{x}_{0}}}{\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}} \\ \end{align}$$
.
And hence the solution becomes:
$$x(t)={{e}^{-\zeta {{\omega }_{n}}t}}\left\{ {{x}_{0}}\cos \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t+\frac{{{{\dot{x}}}_{0}}+\zeta {{\omega }_{n}}{{x}_{0}}}{\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}}\sin \sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}t \right\},$$
                             

The other two constants X,ϕ can be determine from:
$$\begin{align} & X={{X}_{0}}=\sqrt{{{\left( {{{{C}'}}_{1}} \right)}^{2}}+{{\left( {{{{C}'}}_{2}} \right)}^{2}}} \\ & X=\sqrt{x_{0}^{2}+{{\left( \frac{{{{\dot{x}}}_{0}}+\zeta {{\omega }_{n}}{{x}_{0}}}{\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}} \right)}^{2}}}=\frac{\sqrt{x_{0}^{2}\omega _{n}^{2}+\dot{x}_{0}^{2}+2{{x}_{0}}{{{\dot{x}}}_{0}}\varsigma {{\omega }_{n}}}}{\sqrt{1-{{\zeta }^{2}}}{{\omega }_{n}}}, \\ & {{\phi }_{0}}={{\tan }^{-1}}\left( \frac{{{{{C}'}}_{1}}}{{{{{C}'}}_{2}}} \right)={{\tan }^{-1}}\left( \frac{{{x}_{0}}{{\omega }_{n}}\sqrt{1-{{\zeta }^{2}}}}{{{{\dot{x}}}_{0}}+\varsigma {{\omega }_{n}}{{x}_{0}}} \right), \\ & \phi ={{\tan }^{-1}}\left( \frac{{{{{C}'}}_{2}}}{{{{{C}'}}_{1}}} \right)={{\tan }^{-1}}\left( \frac{{{{\dot{x}}}_{0}}+\varsigma {{\omega }_{n}}{{x}_{0}}}{{{x}_{0}}{{\omega }_{n}}\sqrt{1-{{\zeta }^{2}}}} \right), \\ \end{align}$$
x .
The following expression:
$${{\omega }_{d}}=\sqrt{1-{{\varsigma }^{2}}}{{\omega }_{n}}$$
                                                                 

is called the frequency of damped vibration. It can be seen that the frequency of damped vibration is always less than the natural frequency. The decrease in the frequency of damped vibration with increasing amount of damping is shown graphically in next figure.
Figure 2- Variation of ωd with damping


SECOND CASE – Critically damped system which has the following conditions:
$$\zeta =1,c={{c}_{c}},\frac{c}{2m}=\sqrt{\frac{k}{m}}$$
                                                           

In this case the two roots h1 and h2 are equal:
$${{h}_{1}}={{h}_{2}}=-\frac{{{c}_{c}}}{2m}=-{{\omega }_{n}}$$
                                                            

Because of the repeated roots, the solution is reduced to:
$$x(t)=({{C}_{1}}+{{C}_{2}}t){{e}^{-{{\omega }_{n}}t}}$$
                                                             

The application of the initial conditions:
$$\begin{align} & x(0)={{x}_{0}}, \\ & \dot{x}(0)={{{\dot{x}}}_{0}}, \\ \end{align}$$
                                                                     

for this case gives:
$$\begin{align} & x(t)=({{C}_{1}}+{{C}_{2}}t){{e}^{-{{\omega }_{n}}t}} \\ & \dot{x}(t)=-{{\omega }_{n}}\left( {{C}_{1}}+{{C}_{2}}t \right){{e}^{-{{\omega }_{n}}t}}+{{C}_{2}}{{e}^{-{{\omega }_{n}}t}} \\ & x(0)=({{C}_{1}}+{{C}_{2}}0){{e}^{-{{\omega }_{n}}0}}={{x}_{0}} \\ & {{C}_{1}}={{x}_{0}}, \\ & \dot{x}(0)=-{{\omega }_{n}}\left( {{x}_{0}}+{{C}_{2}}0 \right){{e}^{-{{\omega }_{n}}0}}+{{C}_{2}}{{e}^{-{{\omega }_{n}}0}}={{{\dot{x}}}_{0}}, \\ & -{{\omega }_{n}}{{x}_{0}}+{{C}_{2}}={{{\dot{x}}}_{0}} \\ & {{C}_{2}}={{{\dot{x}}}_{0}}+{{\omega }_{n}}{{x}_{0}} \\ \end{align}$$
.
And the solution becomes:
$$x(t)=\left( {{x}_{0}}+\left( {{{\dot{x}}}_{0}}+{{\omega }_{n}}{{x}_{0}} \right) \right)t{{e}^{-{{\omega }_{n}}t}}$$
                                                      

It can be seen that the motion represented in previous equation is non-periodic.
Figure 3 –Critically damped system



THIRD CASE – Overdamped system:
$$\varsigma >1,c>{{c}_{c}},\frac{c}{2m}>\sqrt{\frac{k}{m}}$$
                                                           

As
$$\sqrt{{{\varsigma }^{2}}-1}>0$$
                                                                    

then the roots h1 and h2 are real and distinct and are given by:
$$\begin{align} & {{h}_{1}}=\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}<0 -="" align="" class="MTDisplayEquation" div="" end="" h="" left="" n="" omega="" right="" sqrt="" varsigma="">                                                         

In this case the solution can be expressed as:
$$x(t)={{C}_{1}}{{e}^{\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}+{{C}_{2}}{{e}^{\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}$$
                                                

As before, we need to apply the initial condition in order to determine the constants of integration C1 and C2.
$$\begin{align} & x(t)={{C}_{1}}{{e}^{\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}+{{C}_{2}}{{e}^{\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}, \\ & \dot{x}(t)={{C}_{1}}\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}{{e}^{\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}+{{C}_{2}}\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}{{e}^{\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}t}}, \\ & x(0)={{C}_{1}}{{e}^{\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}0}}+{{C}_{2}}{{e}^{\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}0}}={{x}_{0}}, \\ & {{C}_{1}}+{{C}_{2}}={{x}_{0}}\Rightarrow {{C}_{1}}={{x}_{0}}-{{C}_{2}}, \\ & \dot{x}(0)={{C}_{1}}\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}{{e}^{\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}0}}+{{C}_{2}}\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}{{e}^{\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}0}}={{{\dot{x}}}_{0}}, \\ & {{C}_{1}}\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}+{{C}_{2}}\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}={{{\dot{x}}}_{0}}, \\ & \left( {{x}_{0}}-{{C}_{2}} \right)\left( -\varsigma +\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}+{{C}_{2}}\left( -\varsigma -\sqrt{{{\varsigma }^{2}}-1} \right){{\omega }_{n}}={{{\dot{x}}}_{0}}, \\ & -\varsigma {{\omega }_{n}}{{x}_{0}}+{{x}_{0}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}+\varsigma {{\omega }_{n}}{{C}_{2}}-{{C}_{2}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}-\varsigma {{\omega }_{n}}{{C}_{2}}-{{C}_{2}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}={{{\dot{x}}}_{0}}, \\ & -2{{C}_{2}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}={{{\dot{x}}}_{0}}-{{x}_{0}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}+\varsigma {{\omega }_{n}}{{x}_{0}}, \\ & 2{{C}_{2}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}=-{{{\dot{x}}}_{0}}+{{x}_{0}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}-\varsigma {{\omega }_{n}}{{x}_{0}}, \\ & {{C}_{2}}=-\frac{{{x}_{0}}{{\omega }_{n}}\left( \varsigma -\sqrt{{{\varsigma }^{2}}-1} \right)+{{{\dot{x}}}_{0}}}{2{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}}, \\ & {{C}_{1}}={{x}_{0}}+\frac{{{x}_{0}}{{\omega }_{n}}\left( \varsigma -\sqrt{{{\varsigma }^{2}}-1} \right)+{{{\dot{x}}}_{0}}}{2{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}}=\frac{2{{x}_{0}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}-2{{x}_{0}}{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}+{{x}_{0}}{{\omega }_{n}}\varsigma +{{{\dot{x}}}_{0}}}{2{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}}, \\ & {{C}_{1}}=\frac{{{x}_{0}}{{\omega }_{n}}\varsigma +{{{\dot{x}}}_{0}}}{2{{\omega }_{n}}\sqrt{{{\varsigma }^{2}}-1}} \\ \end{align}$$
.

Previous equation shows that the motion is aperiodic regardless of the initial conditions imposed on the system. Since h1 and h2 are both negative, the motion diminishes exponentially with time.

Free vibration of an Undamped Translational System



As mentioned earlier we are going to use the Free body diagram to derive the second order differential equation which describes the motion of the system. The procedure can be summarized as follows:
1)      Select a suitable coordinate to describe the position of the mass or rigid body in the system. Use a linear coordinate to describe the linear motion of a point mass or the centroid of a rigid body, and an angular coordinate to describe the angular motion of a rigid body.
2)      Determine the static equilibrium configuration of the system and measure the displacement of the mass or rigid body from its static equilibrium position.
3)      Draw the free body diagram of the mass or rigid body when a positive displacement and velocity are given to it. Indicate all the active and reactive forces acting on the mass or rigid body.
4)      And finally apply Newton’s second law of motion to the mass or rigid body shown in free body diagram. Newton’s second law of motion can be state as follows :
Rate of change of momentum of a mass is equal to the force acting on it.

 If the mass of the system is displaced at a distance x(t) when acted upon by a resultant force in the same direction, Newton’s second law of motion gives
$$\overrightarrow{F}\left( t \right)=\frac{d}{dt}\left( m\frac{d\overrightarrow{x}\left( t \right)}{dt} \right)$$
If a mass m is constant, this equation reduces to:
$$\overrightarrow{F}\left( t \right)=m\frac{{{d}^{2}}\vec{x}\left( t \right)}{d{{t}^{2}}}=m\ddot{\vec{x}}$$
is the acceleration of the mass. Previous equation can be stated in words as
Resultant force on the mass = mass * acceleration
Where
$$\ddot{\vec{x}}=\frac{{{d}^{2}}\vec{x}\left( t \right)}{d{{t}^{2}}}$$
For a rigid body undergoing rotational motion Newton’s law gives
$$\vec{M}\left( t \right)=J\ddot{\vec{\theta }}$$
Where $$\vec{M}$$  is resultant moment acting on the body and 
$$\ddot{\vec{\theta }}={{{d}^{2}}\theta \left( t \right)}/{d{{t}^{2}}}\;$$  

  and θ are resulting angular displacement and angular acceleration respectively. Equation or represents the equation of motion of the vibrating system.

FIGURE 1 - SPRING MASS SYSTEM

The procedure is now applied to the undamped single-degree of freedom system shown in Fig 1. Here the mass is supported on frictionless rollers and can have translator motion in the horizontal direction. When the mass is displaced a distance +x from its equilibrium position the force in spring is kx, and the free-body diagram of the mass can be represented as shown in fig 1 the application of the 1 to mass m yields the equation of motion.
$$\begin{align} & F\left( t \right)=-kx=m\ddot{x}, \\ & m\ddot{x}+kx=0 \\ \end{align}$$
The initial conditions are:
$$\begin{align} & x(0)={{x}_{0}}, \\ & \dot{x}(0)={{{\dot{x}}}_{0}} \\ \end{align}$$
The assumed solution of previously derived differential equation can be written in the following form
$$x(t)=A\cos {{\omega }_{n}}t+B\sin {{\omega }_{n}}t$$
By applying initial conditions to assumed solution we will determine the constants of integration A and B. After we determine that we can write the assumed solution in the following form
$$x(t)={{x}_{0}}\cos {{\omega }_{n}}t+\frac{{{{\dot{x}}}_{0}}}{{{\omega }_{n}}}\sin {{\omega }_{n}}t$$
As we all know the
$${{\omega }_{n}}=\sqrt{\frac{k}{m}}$$
is the natural frequency of the system.
An alternate assumed solution can be written in the following form:
$$x\left( t \right)=A\sin \left( {{\omega }_{n}}t+\phi \right)$$
By expanding the previous equation using trigonometric identity we will get:
$$\begin{align} & \sin \left( a+b \right)=\sin a\cos b+\cos a\sin b \\ & x\left( t \right)=A\cos \phi \sin {{\omega }_{n}}t+A\sin \phi \cos {{\omega }_{n}}t \\ \end{align}$$
A and ϕ can be determined from the following expressions:
$$\begin{align} & A=\sqrt{x_{0}^{2}+{{\left( \frac{{{{\dot{x}}}_{0}}}{{{\omega }_{n}}} \right)}^{2}}}, \\ & \phi ={{\tan }^{-1}}\left( \frac{{{x}_{0}}{{\omega }_{n}}}{{{{\dot{x}}}_{0}}} \right) \\ \end{align}$$
The free vibration response of a one-degree-of- freedom system is shown in next  figure:

FIGURE 2 - Free vibration response of an undaped one-degree- of-freedom system

The initial conditions determine the energy initially present in the system. Potential energy is continually converted to kinetic energy and vice versa. Since energy is conserved, the system eventually returns to its initial state with its original kinetic and potential energies, completing the first cycle of motion. The subsequent motion duplicates the previous motion. The system takes the same amount of time to execute its second cycle as it does its first. Since no energy is dissipated from the system, the system executes cycles of motion indefinitely. 

            A motion which exactly repeats after some time is said to be period. A period is the amount of time it takes the system to execute one cycle. The frequency is the number of cycles the system executes in a period of time and is the reciprocal of the period.
$$\begin{align} & T=\frac{2\pi }{{{\omega }_{n}}}, \\ & f=\frac{{{\omega }_{n}}}{2\pi } \\ \end{align}$$


Example 1.1.

An engine of mass 500 kg is mounted on an elastic foundation of stiffness 7*10^5N/m. Determine the natural frequency of the system.
Solution:
The system is modeled as a hanging mass-spring system. The natural frequency will be determined using the following expression:
$${{\omega }_{n}}=\sqrt{\frac{k}{m}}=\sqrt{\frac{7\cdot {{10}^{5}}}{500}}=37.4rad/s=5.96Hz$$

Example 2.2



A wheel is mounted on a steel shaft (G=83*10^9 N/m^2) of length 1.5 m and radius 0.80cm. the wheel is rotated 5 degrees and released. The period of oscillation is observed as 2.3.s Determine the mass moment of inertia of the wheel. 

Figure 3 – Wheel mounted on torsional spring (shaft)


Solution:
The oscillations of the wheel about its equilibrium position are modeled as the torsional oscillations of a disk on a massless shaft, as illustrated in previous figure. The differential equation is:
$$\begin{align} & \sum{{{M}_{0}}}=I\ddot{\theta } \\ & -\frac{JG}{L}\theta =I\ddot{\theta } \\ & I\ddot{\theta }+\frac{JG}{L}\theta =0 \\ \end{align}$$
If we divide the previous equation by I we will get:
$$\ddot{\theta }+\frac{JG}{LI}\theta =0$$
The natural frequency of the system can be determined from:
$${{\omega }_{n}}=\sqrt{\frac{JG}{IL}}$$
The natural frequency can be also determined from:
$${{\omega }_{n}}=\frac{2\pi }{T}=\frac{2\pi }{2.3}=2.73rad/s$$
Thus the moment of inertia of the wheel is calculated form:
$$I=\frac{JG}{L\omega _{n}^{2}}=\frac{\frac{\pi }{2}{{\left( 0.008 \right)}^{4}}\left( 83\cdot {{10}^{9}} \right)}{1.5\cdot 2.73}=47.8kg{{m}^{2}}$$