Exercise 1.1: The forward
difference formulas make use of the values of the function to the right of the base
grid point. Thus the first derivative at point i(t = t_i) is defined as:
Derive the forward
difference formulas for:
Solution:
d2xdt2|i=dxdt|i+1−dxdt|iΔt=(xi+2−xi+1Δt)−(xi+1−xiΔt)Δt=xi+2−2xi+1+xi(Δt)2
d3xdt3|i=d2xdt2|i+1−d2xdt2|iΔt=(xi+3−2xi+2+xi+1(Δt)2)−(xi+2−2xi+1+xi(Δt)2)Δt=xi+3−3xi+2+3xi+1−xi(Δt)3
d4xdt4|i=d3xdt3|i+1−d3xdt3|iΔt=(xi+4−3xi+3+3xi+2−xi+1(Δt)3)−(xi+3−3xi+2+3xi+1−xi(Δt)3)Δt=d4xdt4|i=xi+4−4xi+3+6xi+2−4xi+1+xi(Δt)4
Exercise 1.2: The backward
difference formulas make use of the values of the function to the right of the base
grid point. Thus the first derivative at point i(t = t_i) is defined as:
Derive the forward
difference formulas for:
+
Solution:
d2xdt2|i=dxdt|i−dxdt|i−1Δt=(xi−xi−1Δt)−(xi−1−xi−2Δt)Δt=xi−2xi−1+xi−2(Δt)2
d3xdt3|i=d2xdt2|i−d2xdt2|i−1Δt=(xi−2xi−1+xi−2(Δt)2)−(xi−1−2xi−2+xi−3(Δt)2)Δt=xi−3xi−1+3xi−2−xi−3(Δt)3
d4xdt4|i=d3xdt3|i−d3xdt3|i−1Δt=(xi−3xi−1+3xi−2−xi−3(Δt)3)−(xi−1−3xi−2+3xi−3−xi−4(Δt)3)Δt=d4xdt4|i=xi−4xi−1+6xi−2−4xi−3+xi−4(Δt)4
Exercise 1.3: Derive the formula for the fourth
derivative according to the central difference method.
Solution:
d4xdt4|i=d2xdt2|i+1−2d2xdt2|i+d2xdt2|i−1(Δt)2=(xi+2−2xi+1+xi(Δt)2)−2(xi+1−2xi+xi−1(Δt)2)+(xi−2xi−1+xi−2(Δt)2)(Δt)2d4xdt4|i=xi+2−4xi+1+6xi−4xi−1+xi−2(Δt)4
Nema komentara:
Objavi komentar